

REVISED BIODIVERSITY DEVELOPMENT ASSESSMENT REPORT (BDAR)

Proposed Tweed Sand Plant Expansion

Lot 22 DP1082435, Lot 23 DP1077509, Lot 494 DP720450, Lot 1 DP1250570, Lot 2 DP1192506, Lot 3 DP1243752, Lot 51 DP1166990 and Lot 50 DP1056966, Cudgen

A Report Prepared for Hanson Construction Materials Pty Ltd

OCTOBER 2021

JWA Pty Ltd Suite C, Building 21 Garden City Office Park, 2404 Logan Road, Eight Mile Plains QLD 4113 p 07 3219 9436 • f 07 3423 2076 • e brisbane@jwaec.com.au

www.jwaec.com.au

BDAR CERTIFICATION

This Biodiversity Development Assessment Report is certified by Adam McArthur - a suitably qualified person and accredited assessor under the accreditation scheme prepared under Section 6.10 of the *Biodiversity Conservation Act 2016* (BC Act), accreditation number BAAS18069.

The report has been prepared based on the requirements of, and information provided under the Biodiversity Assessment Method (DPIE 2020) and submitted via the Biodiversity Offsets and Agreement Management System (BOAMS) on 25th October 2021, **case number** (00022641/BAAS18069/20/00022642 /Revision:0).

Signed _

25th October 2021

Date: __

© 2021 JWA Pty Ltd All Rights Reserved. Copyright in the whole and every part of this document belongs to JWA Pty Ltd and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person without the prior written consent of JWA Pty Ltd.

DOCUMENT CONTROL

Document

Title	Revised Biodiversity Development Assessment Report (BDAR)
Job Number	N03074
File Reference	\\SERVER\data\2003 CLIENTS\N03074_Tweed Sand Plant\2020\BDAR
Version and Date	Rw3 06/10/21
Client	Hanson Construction Materials Pty Ltd

Revision History (office use only)

Issue	Version	Draft/Final	Date Sent	Distributed To	No. Copies	Media	Delivery Method
1	Rw1	DRAFT	17/02/21	Client	1	pdf	Email
2	Rw2	FINAL	02/03/21	Client	1	pdf	Email
3	Rw3	DRAFT	06/10/21	Client	1	pdf	Email
4	Rw4	FINAL	25/10/21	Client	1	Pdf	Email

Client Issue

Version	Date	Author		Approved by	
Version		Name	Initials	Name	Initials
Rw1	17/02/21	Adam McArthur	AM	Adam McArthur	AM
Rw2	02/03/21	Adam McArthur	AM	Adam McArthur	AM
Rw3	06/10/21	Adam McArthur	AM	Adam McArthur	AM
Rw4	25/10/21	Adam McArthur	AM	Adam McArthur	AM

© 2021 JWA Pty Ltd All Rights Reserved. Copyright in the whole and every part of this document belongs to JWA Pty Ltd and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person without the prior written consent of JWA Pty Ltd.

EXECUTIVE SUMMARY

Hanson Construction Materials Pty Ltd (Hanson) commissioned JWA Pty Ltd (JWA) to prepare a Biodiversity Development Assessment Report (BDAR) for the proposed expansion of their Tweed Sand Plant (TSP) operation located in Cudgen, New South Wales. This report was prepared to satisfy the relevant aspects of the Secretary's Environmental Assessment Requirements (SEARs) issued for the Project in December 2019.

Hanson's existing TSP operation has a total extraction footprint of approximately 46 hectares (ha). Sand extraction has been undertaken at this location since 1983 with Hanson assuming operation of the site in 2007. TSP operates under Development Application (DA) DA 152-6-2006 issued on 31st July 2006, as modified on 20th August 2018 (Notice of Modification MOD 1). The current MOD 1 approval remains valid until 1st July 2036 and authorises TSP to produce and transport from the site up to 500,000 tonnes of quarry products per financial year.

To meet ongoing demand for sand, Hanson is proposing to expand its existing operations into lands to the north and west of the TSP site over a thirty (30) year period. This expansion will be carried out progressively over eleven (11) phases, however it is noted that Phases 1 - 4 are to have been completed prior to the proposed expansion. Therefore, this BDAR applies to Phases 5 - 11 only. The footprint of the expansion area is approximately 190 ha, giving a total combined footprint of 236 ha for the existing and future extraction areas.

The findings of this BDAR are based on detailed vegetation assessments and targeted threatened flora and fauna surveys completed in August and October 2020, and in January 2021.

The BDAR was originally submitted as part of an Environmental Impact Statement (EIS) prepared by Zone Planning Group Pty Ltd dated 30th March 2021. Revisions to the BDAR were made in October 2021 based on submissions received from Tweed Shire Council (dated 4th June 2021) and the Biodiversity Conservation Division (BCD) of the Department of Planning, Industry and Environment (dated 27th May 2021).

The ecological assessment involved a two-stage approach to ensure an appropriate level of assessment was undertaken. Firstly, a desktop review was undertaken to highlight any potential conservation significant vegetation communities, any potential habitat for threatened flora or fauna, and any ecologically sensitive areas on site. Secondly, using the results from the desktop review field surveys of flora, fauna and habitat were completed.

Detailed assessments of the composition, structure and function of site vegetation were completed on the 27th August and the 27th October 2020 utilising the Biodiversity Assessment Method (DPIE 2020). The assessments were completed respectively by one (1) suitably qualified person and accredited assessor under the accreditation scheme prepared under Section 6.10 of the *Biodiversity Conservation Act 2016* (BC Act).

The assessments determined that three (3) Plant Community Type (PCT) comprising four (4) separate vegetation zones occurs within the development area:

- <u>Vegetation Zone 1: Mid-high swamp sclerophyll forest (Casuarina glauca) to 18m</u>. This zone occurs along drainage lines throughout the subject site and is considered to be best represented by **Plant Community Type (PCT) 1235** (Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion) as described within the BioNet Vegetation Classification (OEH 2021). This vegetation is considered to be a modified/degraded of the **Threatened Ecological Community (TEC)** Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner bioregions as listed within schedules of the BC Act (2016).
- <u>Vegetation Zone 2: Mid-high regenerating swamp sclerophyll forest (Casuarina glauca) +/- Mangroves (Avicennia marina) to 5-10m</u>. This zone occurs along drainage lines throughout the subject site and is considered to be best represented by PCT 1235 and represents a modified/degraded version of the TEC Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner bioregions.
- <u>Vegetation Zone 3: Tall swamp sclerophyll forest (Melaleuca quinquenervia,</u> <u>Cinnamomum camphora) to 22m</u>. This zone occurs in the northern portion of the site and is considered to be best represented by PCT 1064 (Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion) and represents a modified/degraded version of the TEC Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions as listed within schedules of the BC Act (2016).
- <u>Vegetation Zone 4: Tall rushland/reedland (Typha orientalis) to 2m.</u> This zone occurs along drainage lines in the southern portion of the subject site, is highly disturbed and is considered to have been derived from PCT 780 (Coastal floodplain sedgelands, rushlands, and forblands of the North Coast). Although this vegetation zone is highly degraded and occurs in association with a manmade drain, to satisfy Tweed Shire Council, it is considered to be representative of a modified/degraded version of the TEC Freshwater wetlands on coastal floodplains of the NSW North Coast, Sydney Basin and South East Corner bioregions as listed within schedules of the BC Act (2016).
- <u>Vegetation Zone 5: Riparian rehabilitation areas.</u> This zone occurs along the margins of the existing Tweed Sand Plant (TSP) operation and is comprised of areas that are currently proposed to be rehabilitated to be representative of **PCT 1235** (Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion) after completion of the current sand extraction operations, in accordance with the approved Rehabilitation and Landscape Management Plan (JWA 2021).
- <u>Vegetation Zone 6: Wetland rehabilitation areas.</u> This zone occurs within the margins of the existing Tweed Sand Plant (TSP) operation and is comprised of areas that are currently proposed to be rehabilitated to wetland vegetation, in accordance with the approved Rehabilitation and Landscape Management Plan (JWA 2021). Vegetation Zone 6 has been allocated to **PCT 1808** (Estuarine reedland).

This determination has been made with consideration of soil type, vegetation types occurring in similar locations in the locality, regenerating native species (where present) and community structure and descriptive attributes provided in the BioNet Vegetation Classification. Two (2) additional vegetation zones (Vegetation Zone 7 and Vegetation Zone 8) were identified on the subject site but was comprised entirely of the exotic or planted species and were not further assessed.

Targeted surveys for threatened flora and fauna species were also completed onsite on the 27th August and 27th October 2020, and between the 26th - 28th January 2021. No threatened flora species listed within schedules of the BC Act or the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) were recorded from the impact area. One (1) threatened fauna species - the Southern Myotis (*Myotis macropus*) - which is provided with suitable habitat, has been assumed to be present.

A number of measures to avoid and mitigate impacts on existing flora, fauna and habitat values of the site have been discussed. The proposed development will however result in unavoidable impacts on 3.82 ha of native vegetation and 2.06 ha of land required to be rehabilitated under existing sand extraction approvals. These impacts are not considered to be serious or irreversible.

Due to the long-term nature of the proposed expansion, this BDAR has been prepared to provide overarching offsetting requirements associated with the proposed sand extraction works on a phase-by-phase basis. Prior to the commencement of sand extraction works within each phase, a phase specific BDAR (or assessment in line with the relevant legislation at that time) will be prepared to accurately assess impacts and offset obligations.

Impacts to the degraded area of PCT 780 (Vegetation Zone 4) are not required to be offset with regards to ecosystem credits or species credits as the vegetation integrity score of this vegetation is below those set out in Paragraphs 10.3.1.1 and 10.3.2.1 of the BAM respectively.

A total of 153 ecosystem credits and 157 species credits have been calculated as applicable for the unavoidable loss of site vegetation as follows:

Ecosystem credits

- PCT 1235 Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion = 72 credits
- PCT 1064 Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion = 21 credits
- PCT 1808 Estuarine reedland = 60 credits

Species credits

• Southern Myotis (*Myotis macropus*) = 157 credits

In accordance with the requirements of the NSW Biodiversity Offsets Scheme, proponents have two primary ways that they can satisfy their offset credit obligation:

1. They can identify and purchase the required 'like for like' credits in the market and then retire those credits via the OEH Biodiversity Offsets and Agreement Management System (BOAMS).

OR

2. They can use the Offsets Payment Calculator to determine the cost of their credit obligation and transfer this amount to the Biodiversity Conservation Fund via OEH BOAMS. The responsibility for identifying and securing the offset obligation would then be transferred to the Biodiversity Conservation Trust.

These credits will need to be purchased or retired as an offset for the removal of site vegetation prior to each phase of the development.

TABLE OF CONTENTS

E>	cecutiv	/e Summary	.4
1	Intr	roduction1	10
	1.1	Background1	10
	1.2	Locality 1	11
	1.3	The Subject Site 1	11
	1.4	Planning Context 1	11
	1.5	The Proposed Development 1	12
	1.6	Sources of Information 1	12
2	Lan	ndscape Features	13
	2.1	Introduction 1	13
	2.2	IBRA Bioregions and Subregions, NSW Landscape Region and Area 1	13
	2.3	Native Vegetation Extent and Cleared Areas in the Buffer Area 1	13
	2.4	Rivers and Streams	
	2.5	Wetlands Within, Adjacent to and Downstream of the Site	13
	2.6	Site Context Components 1	
	2.6	.1 Introduction	14
	2.6	.2 Percent Native Vegetation Cover 1	14
	2.6	_	
3	Nat	tive Vegetation Assessment	
	3.1	Introduction	
	3.2	Methodology 1	
	3.2		
	3.2		
	3.2		
	3.3	Results	
	3.3		
	3.3	•	
	3.3		
4		reatened Species Assessment	
•	4.1	Introduction	
	4.2	Threatened Plant Surveys	
	4.2	-	
	4.2		
	4.3	Threatened Fauna Surveys	
	4.3	-	
	4.3		
	4.4	Ecosystem Credit Species	
	4.5	Species Credit Species	
5		bact Summary	
J	5.1	Introduction	
	5.2	Direct Impacts on Native Vegetation/Habitat	
	J.Z	Direct impacts on native vegetation/ habitat	17

ļ	5.3	Pot	ential Indirect Impacts	42
ŗ	5.4	Pre	escribed Biodiversity Impacts	42
	5.4	.1	Background	42
	5.4	.2	Applicability to the Assessment Area	43
ŗ	5.5	Pot	ential Serious and Irreversible Impacts	44
	5.5	.1	Background	44
	5.5	.2	Applicability to the Assessment Area	45
5	5.6	Imp	pacts Requiring an Offset	45
	5.6	.1	Ecosystem Credits	45
	5.6	.2	Threatened Species	46
6	Avo	oidar	nce & Minimisation of Impacts	47
6	5.1	Inti	roduction	47
6	5.2	Avc	pidance and Minimisation Measures	47
	6.2	.1	Pre-Construction/Design Phase	47
	6.2	.2	Construction Phase	47
	6.2	.3	Post-construction/Operational Phase	49
7	Bio	dive	ersity Credit Report	51
7	7.1	Inti	roduction	51
7	7.2	Eco	osystem Credits	51
7	7.3	Spe	ecies Credits	51
Арј	pendi	x 1 ·	- Adam McArthur CV	53
Арј	pendi	x 2 ·	- BAM Data Sheets	54
Арј	pendi	x 3 -	- BAM Predicted Species Report	55
Арј	pendi	x 4 ·	- BAM Candidate Species Report	56
Ap	pendi	x 5 ·	- BAM Biodiversity Credit Report	57

1 INTRODUCTION

1.1 Background

Hanson Construction Materials Pty Ltd (Hanson) commissioned JWA Pty Ltd (JWA) to prepare a Biodiversity Development Assessment Report (BDAR) for the proposed expansion of their Tweed Sand Plant (TSP) operation located in Cudgen, New South Wales. This report was prepared to satisfy the relevant aspects of the Secretary's Environmental Assessment Requirements (SEARs) issued for the Project in December 2019.

The BDAR was originally submitted as part of an Environmental Impact Statement (EIS) prepared by Zone Planning Group Pty Ltd dated 30th March 2021. Revisions to the BDAR were made in October 2021 based on submissions received from Tweed Shire Council (dated 4th June 2021) and the Biodiversity Conservation Division (BCD) of the Department of Planning, Industry and Environment (dated 27th May 2021).

Hanson's existing TSP operation has a total extraction footprint of approximately 46 hectares (ha). To meet ongoing demand for sand, Hanson is proposing to expand its existing operations into lands to the north and west of the TSP site over a thirty (30) year period. This expansion will be carried out progressively over eleven (11) phases, however it is noted that Phases 1 - 4 are to have been completed prior to the proposed expansion. Therefore, this BDAR applies to Phases 5 - 11 only. The footprint of the expansion area is approximately 190 ha, giving a total combined footprint of 236 ha for the existing and future extraction areas.

Due to the long-term nature of the proposed expansion, this BDAR has been prepared to provide overarching offsetting requirements associated with the proposed sand extraction works on a phase-by-phase basis. Prior to the commencement of sand extraction works within each phase, a phase specific BDAR (or assessment in line with the relevant legislation at that time) will be prepared to accurately assess impacts and offset obligations.

In accordance with the requirements of the *Biodiversity Conservation Regulations 2017* (BCR), this report has been prepared by Adam McArthur, a suitably qualified person and accredited assessor under the accreditation scheme prepared under Section 6.10 of the *Biodiversity Conservation Act 20016* (BC Act) (Certification No. BAAS18069). A copy of Adam's CV is provided in **APPENDIX 1**.

The preparation of the BDAR has involved the following:

- An assessment of the biodiversity values of the subject site utilising the Biodiversity Assessment Method (BAM) (DPIE 2020) including:
 - \circ An assessment of the landscape features and site context;
 - Determining the presence of Threatened Ecological Communities (TECs), Plant Community Types (PCTs), and the condition (vegetation integrity) of native vegetation on the subject site;

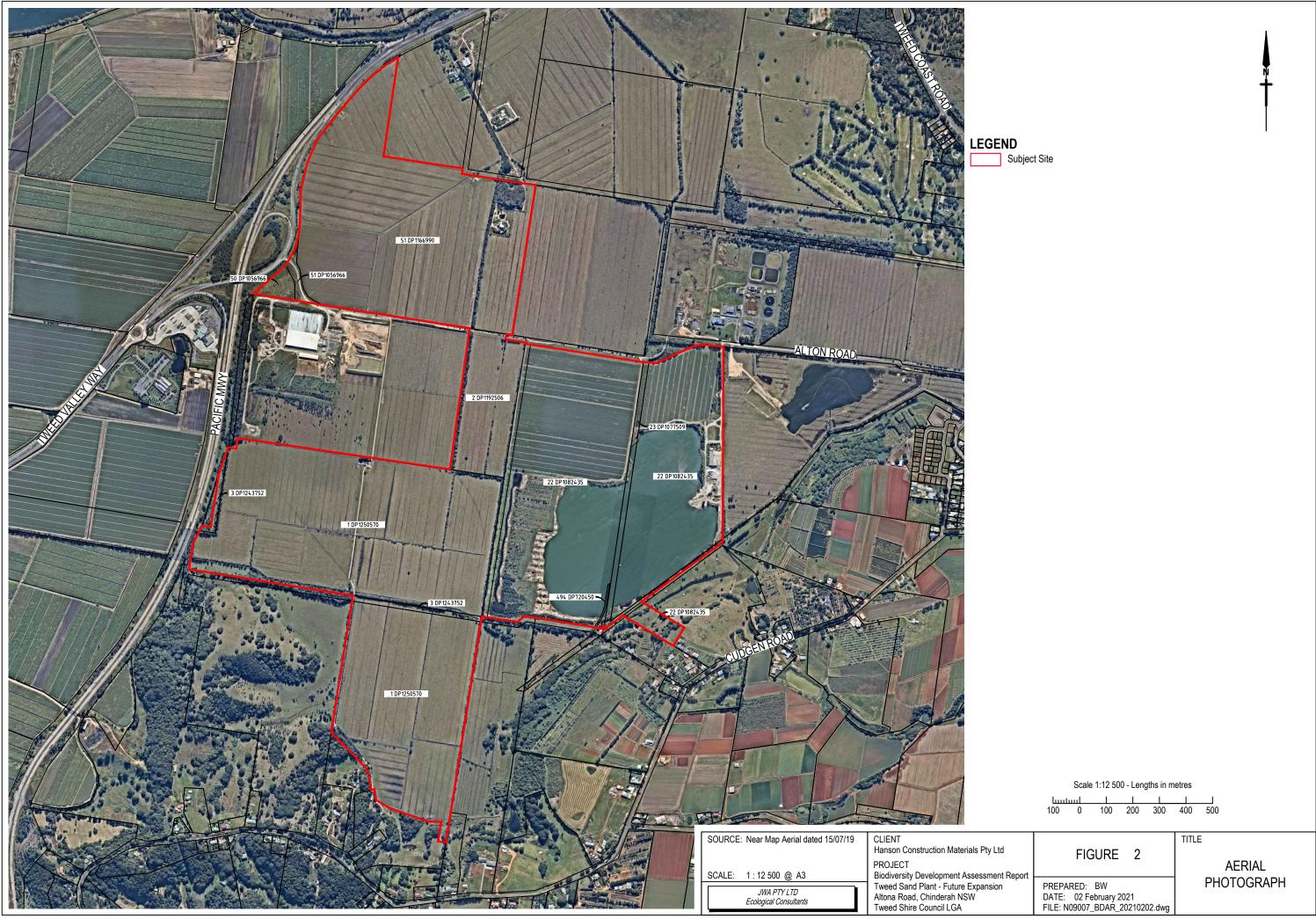
- Determining the habitat suitability for Threatened species on the subject site; and
- An impact assessment of the proposed development on biodiversity values in accordance with the requirements of the BAM including:
 - Documenting measures to avoid and/or minimise impacts of the proposed development;
 - Assessing direct and indirect impacts on native vegetation and habitat;
 - Discussing measures to mitigate and manage unavoidable impacts;
 - \circ $\;$ Identification of any serious and irreversible impacts; and
 - \circ Calculating the offset requirement of the proposed development.

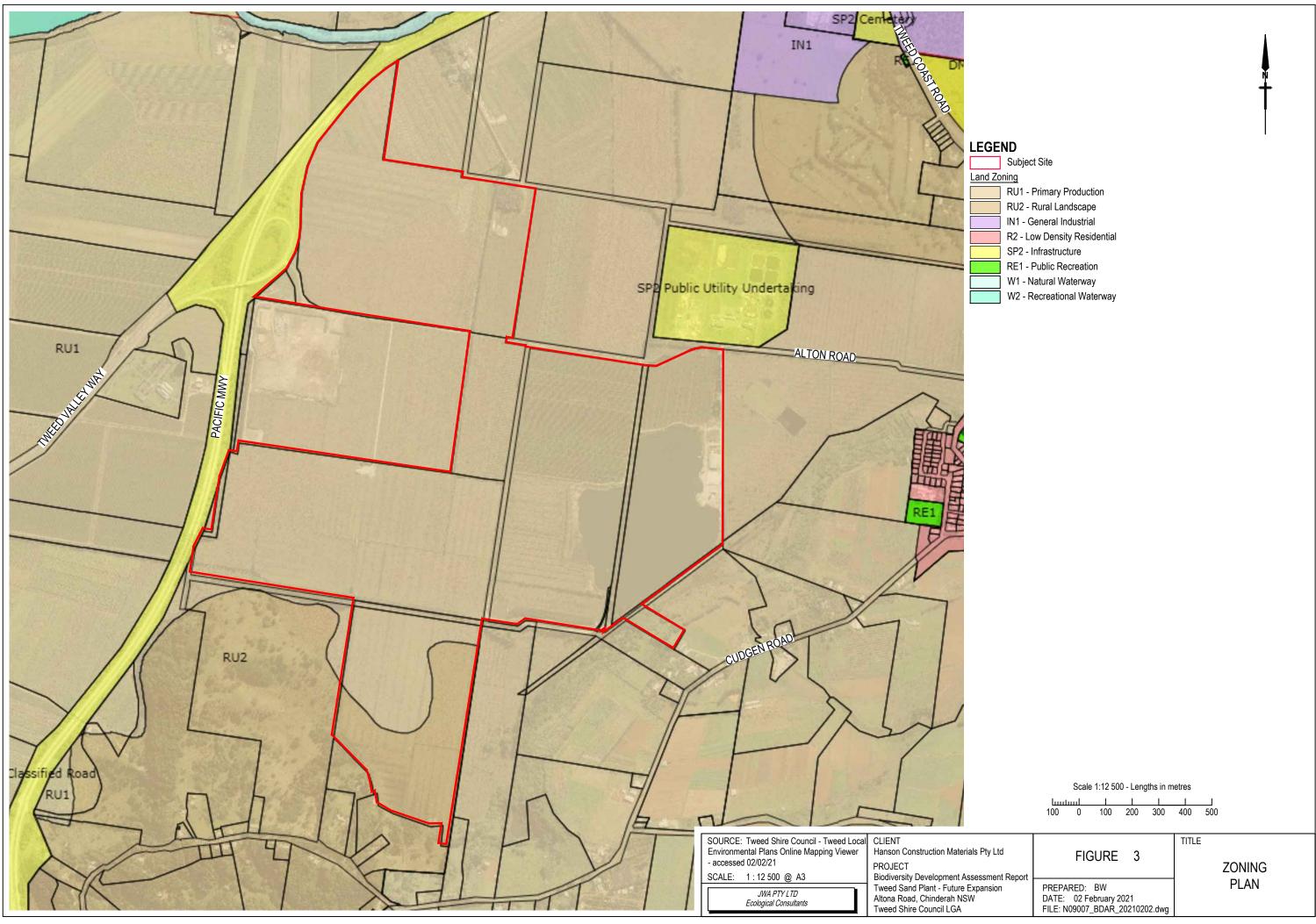
1.2 Locality

The Locality is defined as the area within a 10km radius of the Subject site for the purposes of this assessment. The locality therefore extends from Coolangatta to Round Mountain and from Upper Durobby to the Pacific Ocean (FIGURE 1).

Prominent features in the locality include the towns of Kingscliff, Cudgen, Chinderah, Tweed River, Stotts Island, Ukerebagh Nature Reserve, Cudgera Creek Nature Reserve, and Cudgen Nature Reserve.


State Environmental Planning Policy (Coastal Management) 2018 (Coastal Management SEPP) wetlands occur approximately 1 - 1.5 km to the north, east south and west of the Subject site.

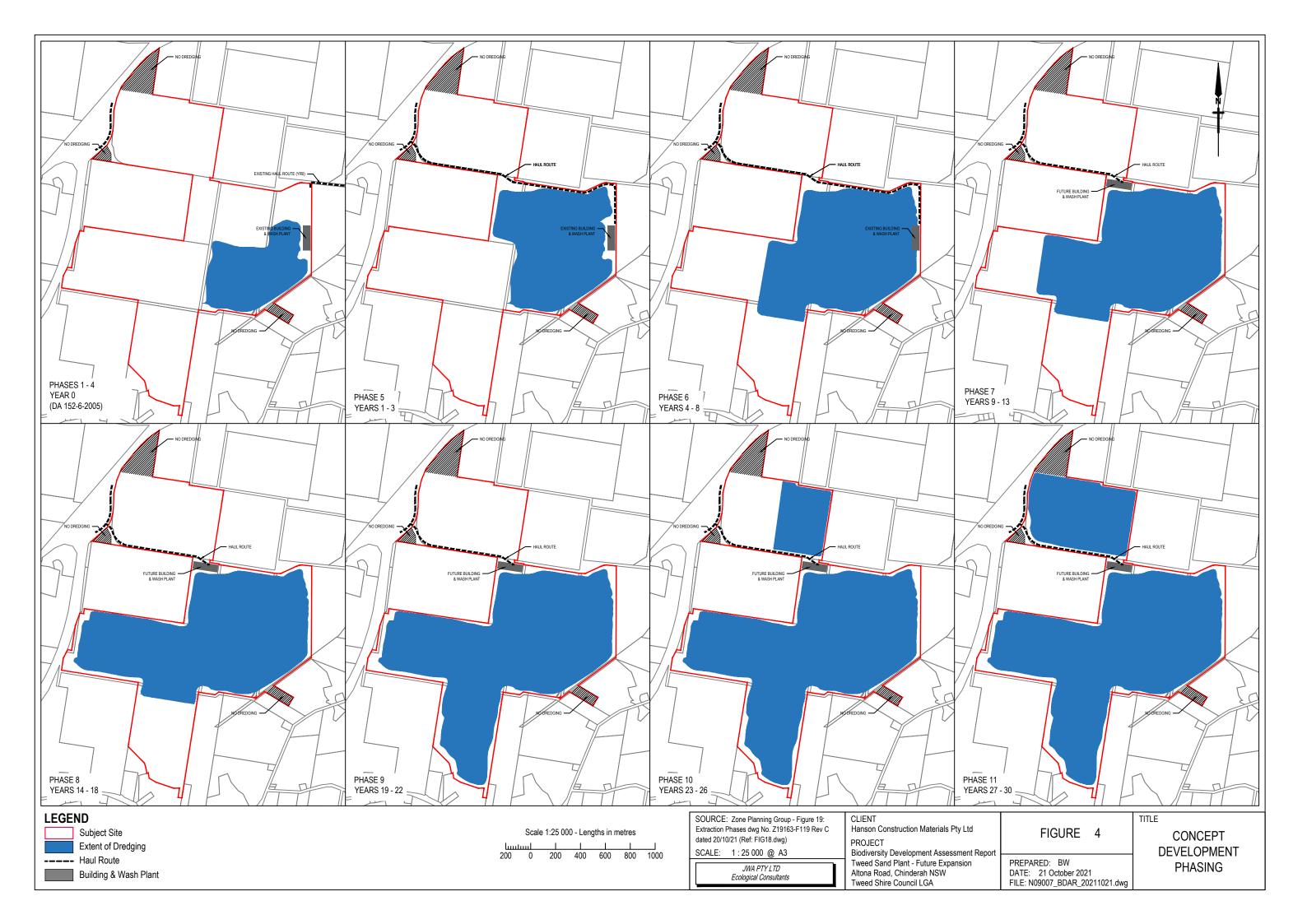

1.3 The Subject Site


TSP is located off Altona Road in Cudgen, Northern NSW (FIGURE 1). The site is formally described as Lot 22 DP1082435, Lot 23 DP1077509, Lot 494 DP720450, Lot 1 DP1250570, Lot 2 DP1192506, Lot 3 DP1243752, Lot 51 DP1166990 and Lot 50 DP1056966. Vegetation on the site ranges from moderate to poor condition due to a history of vegetation clearing, cropping and cattle grazing activities. An aerial photograph of the Subject site and surrounds is shown in FIGURE 2.

1.4 Planning Context

The subject site is located within the Tweed LGA. The subject site is therefore subject to the Tweed Local Environmental Plan 2014 (LEP) and associated plans, policies and controls. Under the Tweed LEP the majority of the subject site is zoned as RU1 - Primary Production with a small area in the southern portion zoned as RU2 - Rural Landscape (FIGURE 3).

1.5 The Proposed Development


Sand extraction has been undertaken on this site since 1983 with Hanson taking over operation of the existing site in 2007. TSP operates under Development Application (DA) DA 152-6-2006 issued on 31 July 2006, as modified on 20 August 2018 (Notice of Modification MOD 1). The current MOD 1 approval remains valid until 1 July 2036 and authorises TSP to produce and transport from the site up to 500,000 tonnes of quarry products per financial year. TSP currently operates a single dredge unit which is linked to an onshore wash plant via a floating flow line. Sand product is processed through the wash plant, stockpiled and loaded via a front-end loader into standard highway trucks.

To meet ongoing demand for sand, Hanson is proposing to expand its existing operations into lands to the north and west of the TSP site over a thirty (30) year period. The footprint of the expansion area is approximately 190 ha, giving a total combined footprint of 236 ha for the existing and future extraction areas. Expansion works will also include construction of a haul road connected to the Pacific Highway and at a later time, new wash plant buildings. A layout and staging plan for the extraction works expansion is shown in **FIGURE 4**.

1.6 Sources of Information

Sources of information used in the assessment, including reports and spatial data are as follows:

- Proposed development layouts provided by the proponent;
- Australian Government's Species Profiles and Threats database (SPRAT) http://www.environment.gov.au/cgi-bin/sprat/public/sprat.pl
- Department of Environment and Climate Change NSW (DECC) (2002). Descriptions for NSW (Mitchell) Landscapes, Version 2.
- Department of Planning, Industry and Environment (DPIE) (2020). Biodiversity Assessment Method.
- Environment Australia (2001) A Directory of Important Wetlands in Australia. 3rd Edition. Environment Australia, Canberra.
- NSW OEH's BAM Calculator <u>https://www.lmbc.nsw.gov.au/bamcalc</u>
- NSW OEH's threatened species database <u>http://www.threatenedspecies.environment.nsw.gov.au/index.aspx</u>
- OEH Threatened Species Profiles
- Office of Environment and Heritage (OEH) (2007). Mitchell Landscapes with per cent cleared estimates.

2 LANDSCAPE FEATURES

2.1 Introduction

This section of the BDAR provides details of landscape features at the development site (in accordance with Section 3.1 of the BAM) including:

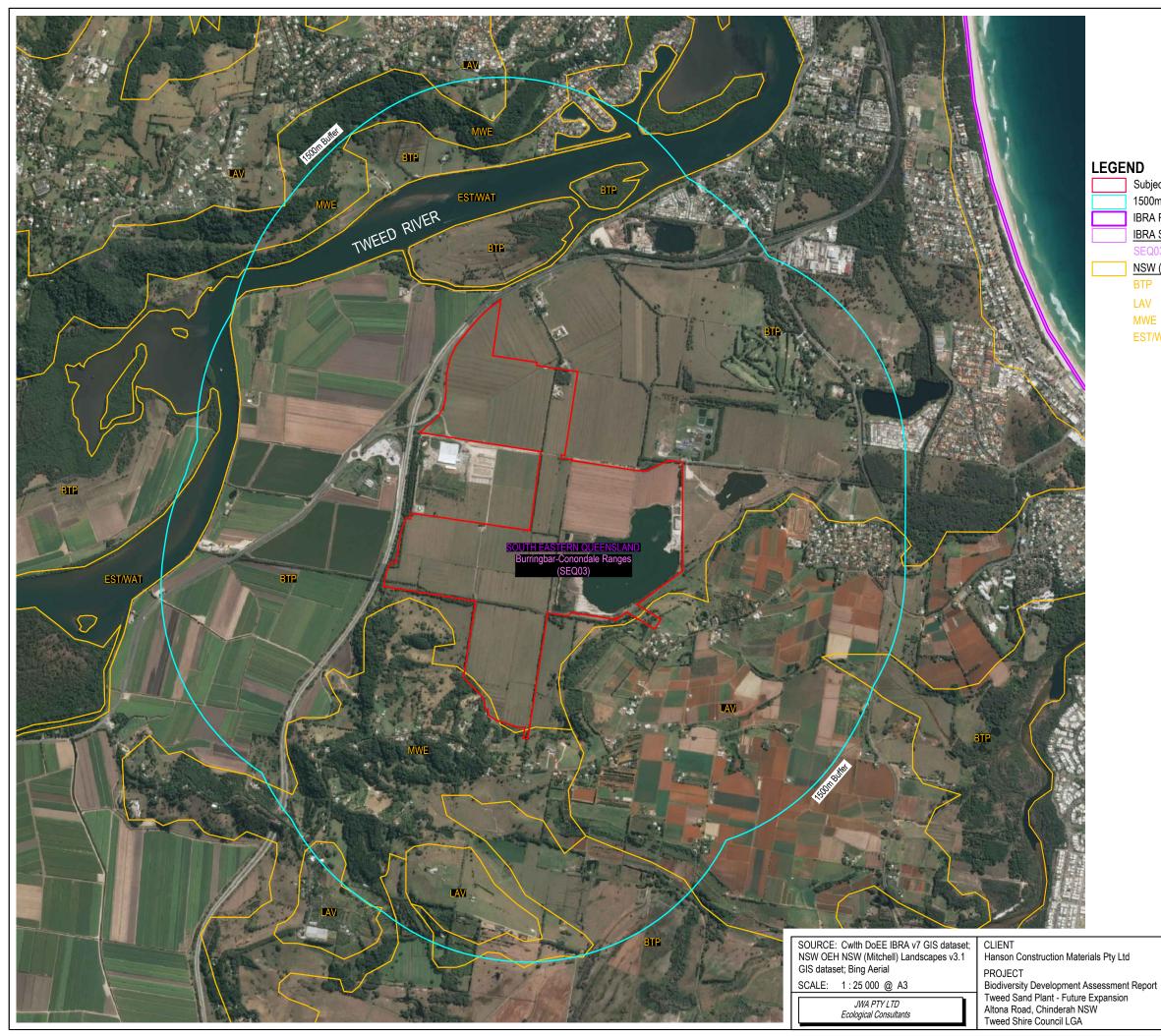
- IBRA bioregions and subregions, NSW landscape region and area (ha);
- native vegetation extent and cleared areas within the buffer area;
- rivers and streams (classified according to stream order);
- wetlands within, adjacent to and downstream of the site;
- connectivity features;
- areas of geological significance and soil hazard features; and
- site context components, including:
 - \circ $\;$ identification of method applied (i.e. linear or site-based); and
 - percent native vegetation cover in the landscape (development site and biodiversity stewardship site).

2.2 IBRA Bioregions and Subregions, NSW Landscape Region and Area

The subject site is located within the Burringbar-Conondale Ranges (SEQ03) subregion of the South Eastern Queensland IBRA bioregion. Mitchell (2002) mapping places the subject site within the Byron - Tweed Alluvial Plains (Btp) NSW landscape region.

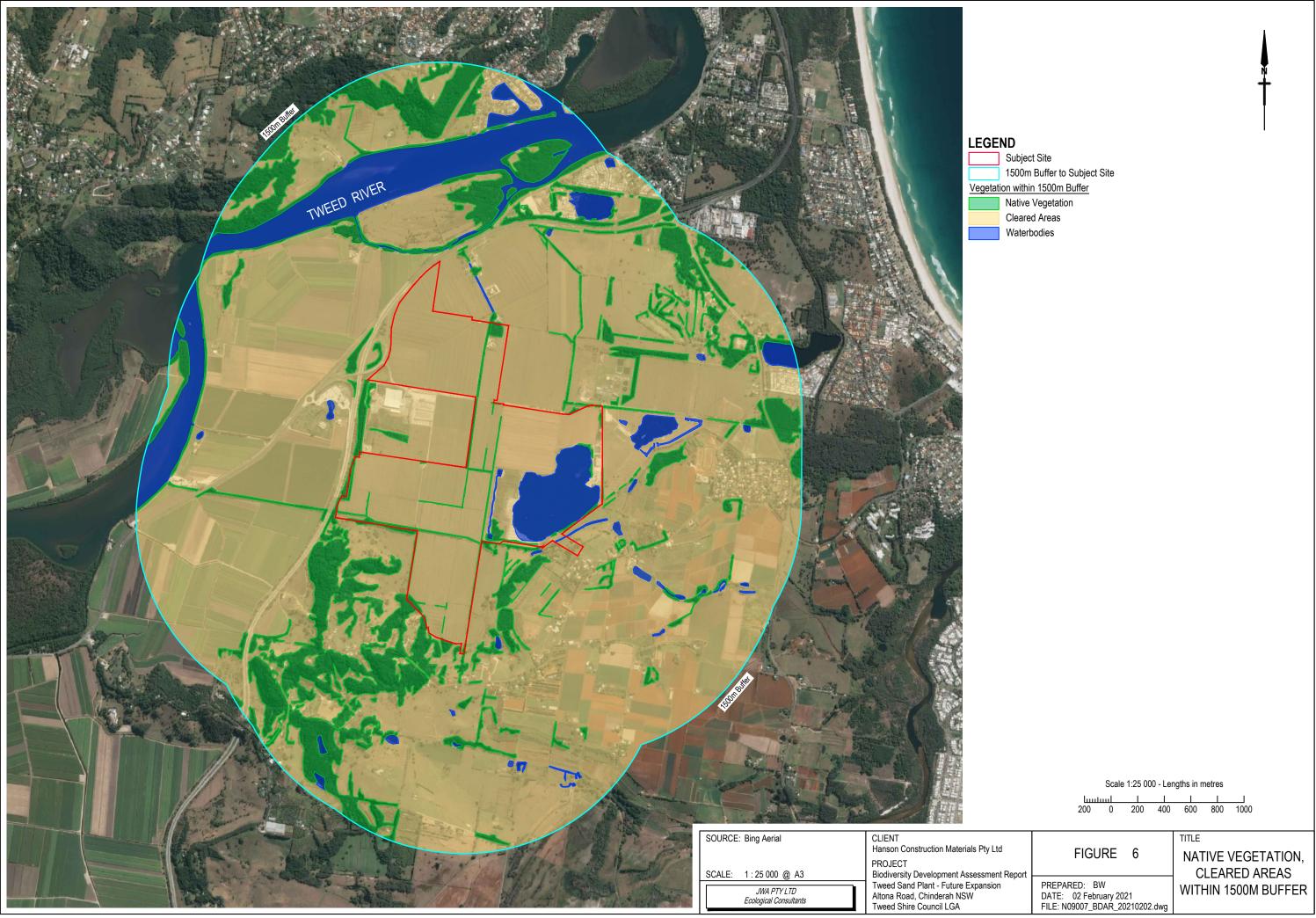
A site map showing the above features at a scale of 1:12,500 is provided as FIGURE 5.

2.3 Native Vegetation Extent and Cleared Areas in the Buffer Area

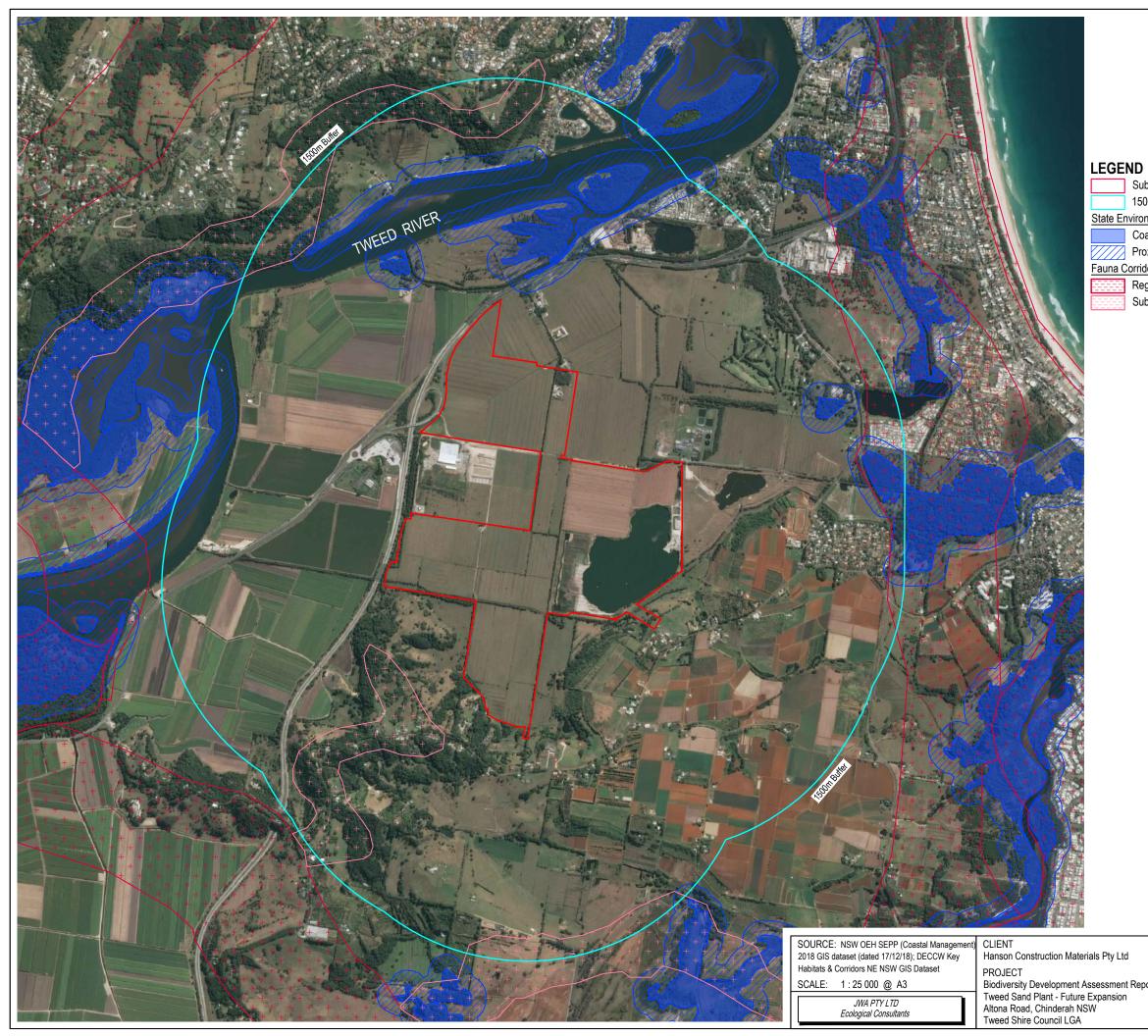

Native vegetation and cleared areas occurring within a 1,500 m buffer area to the subject site are shown in **FIGURE 6**. It is estimated that the extent of native vegetation within the buffer area is approximately 303 ha (i.e. 14%).

2.4 Rivers and Streams

The Tweed River occurs approximately 600 m to the north-north-west of the development site (**FIGURE 2**). The subject site is tenuously hydrologically linked to the river via numerous constructed drainage channels that occur throughout the site.


2.5 Wetlands Within, Adjacent to and Downstream of the Site

A number of coastal wetland areas as mapped by the Coastal Management SEPP (2018) occur to the north, east, south and west of the Subject site of the site (FIGURE 7).



Subject Site 1500m Buffer to Subject Site IBRA Region - South Eastern Queensland IBRA Subregion SEQ03 Burringbar-Conondale Ranges NSW (Mitchell) Landscape BTP Byron - Tweed Alluvial Plains LAV Lamington Volcanic Slopes MWE Mount Warning Exhumed Slopes EST/WAT Estuary/Water Added

	Scale 1:25 000 - Lei	igths in metres	
	ل <u>ساسا ا</u> 200 0 200 400	J 600 800 1000	
port	FIGURE 5	IBRA & NSW	
	PREPARED: BW DATE: 02 February 2021 FILE: N09007_BDAR_20210202.dwg	LANDSCAPE REGIONS	

oject Site
00m Buffer to Subject Site
vithin 1500m Buffer
tive Vegetation
ared Areas
terbodies

 Subject Site

 1500m Buffer to Subject Site

 State Environmental Planning Policy (Coastal Management) 2018

 Coastal Wetlands

 Proximity Area for Coastal Wetlands

 Fauna Corridors of North East NSW

 Regional Corridor

 Sub-regional Corridor

	Scale 1:25 000 - Lengths in metres					
	<u>اساسا ا</u> 200 0 200 400	J 600 800 1000				
port	FIGURE 7	CORRIDORS &				
port	PREPARED: BW DATE: 02 February 2021 FILE: N09007_BDAR_20210202.dwg	SEPP 2018 - COASTAL WETLANDS				

2.6 Site Context Components

2.6.1 Introduction

The assessment of site context involved the application of the site-based method. The following landscape attributes were assessed:

- Percent native vegetation cover in the landscape; and
- Patch size.

2.6.2 Percent Native Vegetation Cover

Native vegetation and cleared areas occurring within a 1,500 m buffer area to the subject site are shown in **FIGURE 6**. It is estimated that the native vegetation cover within the buffer area is 14%. The >10-30% native vegetation cover class has therefore been used to assess the habitat suitability of the subject site for Threatened species in **SECTION 4**.

2.6.3 Patch Size

Native vegetation and cleared areas occurring within a 1,500 m buffer area to the subject site are shown in **FIGURE 6.** The patch size in which the subject vegetation occurs has been estimated to be 7.92 ha. The 5-24 ha patch size class has therefore been used to assess the habitat suitability of the subject site for Threatened species in **SECTION 4.**

3 NATIVE VEGETATION ASSESSMENT

3.1 Introduction

This section of the BDAR identifies native vegetation extent within the development site, including any cleared areas (in accordance with the requirements of Section 4 of the BAM). This section describes Plant Community Types (PCTs) within the development site including:

- vegetation class;
- vegetation type;
- area (ha) for each vegetation type;
- species relied upon for identification of vegetation type and relative abundance;
- justification of evidence used to identify a PCT (as outlined in Paragraph 4.2 of the BAM);
- Threatened Ecological Community (TEC) status (as outlined in Paragraph 4.2 of the BAM); and
- estimate of percent cleared value of PCT (as outlined in Paragraph 4.2.1.5 of the BAM).

This Section also includes the results of a vegetation integrity assessment of the development site, including:

- mapping vegetation zones (in accordance with Subsection 4.3.1 of the BAM);
- patch size;
- assessing vegetation integrity using benchmark data (in accordance with Subsection 4.3.3.5 of the BAM);
- survey effort (as described in Subsection 4.3.4 of the BAM); and
- determining the vegetation integrity score (in accordance with Appendix H of the BAM) including:
 - composition condition score;
 - structure condition score;
 - function condition score; and
 - vegetation integrity score.

3.2 Methodology

3.2.1 Site Assessments

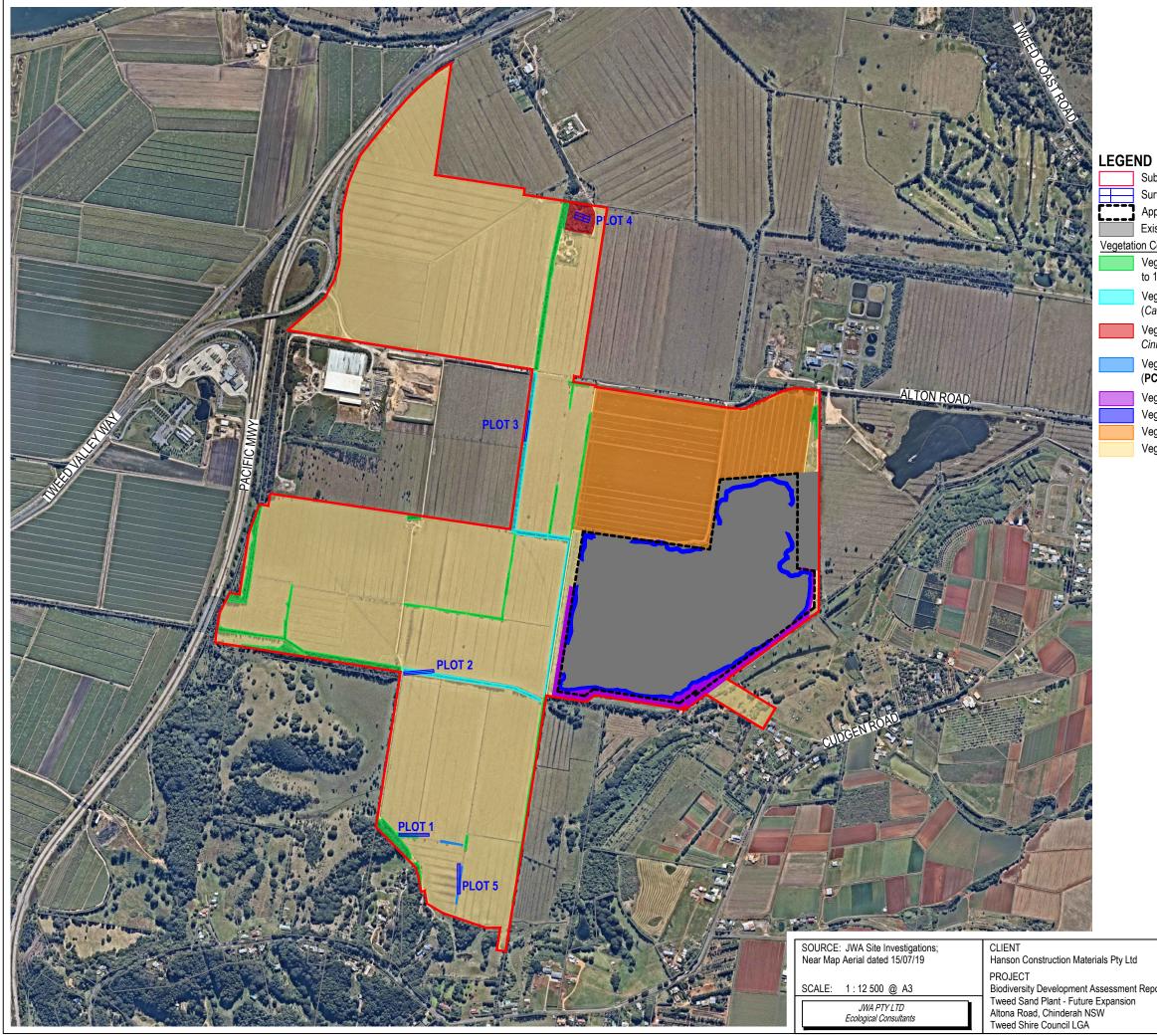
Site vegetation was assessed initially on the 27th August and then again on the 27th October 2020 by one (1) suitably qualified person and accredited assessor under the accreditation scheme prepared under Section 6.10 of the *Biodiversity Conservation Act 2016* (BC Act)

using a plot-based vegetation survey based on a 20 m x 20 m plot. Vegetation along drainage lines was assessed using a modified 10 m x 40 m plot due to the thin and linear nature of this vegetation.

The information contained in **TABLE 1** below was collected during the assessments.

Attribute	Survey requirement
Stratum (and layer)	Stratum and layer in which each species occurs
Growth form	Growth form for each recorded species
Species name	Scientific name and common name
Cover	Estimate the % foliage cover across the plot of each species rooted in or overhanging the plot. Cover should be recorded in decimals if less than 1% (0.1, 0.2), or whole numbers up to 5% (1,2,3), or to the nearest 5% where greater than 5% cover (5,10,15,20,25)
Abundance rating	For species with cover less than or equal to 5%, count or estimate the number of individuals or shoots of each species within the plot, using the following intervals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000, 1500, 2000, etc.
	Numbers above 20 are estimates only, and the recorded abundance is the upper end of each class (e.g. 50 represents an estimated abundance of between 20 and 50).
	For species with cover greater than 5%, abundance estimates are not required (but may be recorded if desired)

TABLE 1VEGETATION SURVEY DATA COLLECTED AT THE SUBJECT LAND


As site vegetation included multiple PCTs, with some displaying varying degrees of disturbance/modification, the Subject Land was stratified into multiple vegetation zones.

In addition, and at the request of TSC and BCD, 0.47 ha of riparian land required to be rehabilitated as PCT 1235 and 1.59 ha of land required to be rehabilitated as wetland vegetation (allocated to PCT 1808) under existing sand extraction approvals have been included as vegetation zones and assessed as if at benchmark levels for the relevant PCTs.

The vegetation zones assessed and the relevant number of plots/transects assessed are detailed in TABLE 2 below. The location of each is shown in FIGURE 8.

РСТ	Vegetation zones	Impact Area	Number of plots/transects	Plot details
PCT 1235 - Swamp Oak	Vegetation Zone 1	1.89 ha	1	Plot 1
swamp forest of the coastal lowlands of the NSW North Coast Bioregion	Vegetation Zone 2 (with Mangroves)	1.10 ha	2	Plot 2; Plot 3
PCT 1064 - Paperbark swamp forest of the coastal lowlands of the NSW North	Vegetation Zone 3	0.57 ha	1	Plot 4

TABLE 2 VEGETATION SURVEY DETAILS

		I
prov prov isting geta 18m egeta asua	t Site Plot red Extraction Area g Works Area & Processing Plant <u>munities</u> tion Zone 1: Mid-high swamp sclerop (PCT 1235) tion Zone 2: Mid-high regenerating st <i>rrina glauca</i>) +/- Mangroves (<i>Avicenn</i> , tion Zone 3: Tall swamp sclerophyll f <i>nomum camphora</i>) to 22m (PCT 106 4	wamp sclerophyll forest <i>ia marina</i>) to 5-10m (PCT 1235) orest (<i>Melaleuca quinquenervia</i> ,
	tion Zone 4: Tall rushland/reedland (<i>Typha orientalis</i>) to 2m
egeta egeta egeta	80, derived) tion Zone 5: Approved Riparian Reha tion Zone 6: Approved Wetland Reha tion Zone 7: Tea tree plantation (not tion Zone 8: Pasture grasses (not as	abilitation Area (PCT 1290) assessed)
	Scale 1:12 500 - Lengths in m Luutuul I I I 100 0 100 200 300	netres I J
port	FIGURE 8 PREPARED: BW DATE: 05 October 2021 FILE: N09007 BDAR 20211005.dwg	VEGETATION COMMUNITIES & SURVEY PLOT LOCATIONS
	THE . 100001_BBAIL_20211000.0Wg	I

РСТ	Vegetation zones	Impact Area	Number of plots/transects	Plot details
Coast Bioregion and Sydney				
Basin Bioregion				
PCT 780 - Coastal floodplain				
sedgelands, rushlands, and	Vegetation Zone 4	0.09 ha	1	Plot 5
forblands of the North Coast				
PCT 1235 - Swamp Oak				
swamp forest of the coastal	Vegetation Zone 5*	0.47ha	n/a	n/a
lowlands of the NSW North	Vegetation Zone J	0.4/11a	117 a	117 d
Coast Bioregion				
PCT 1808 - Estuarine	Vegetation Zone 6*	1.59ha	n/a	n/a
reedland^	Vegetation Zone o	1.5911d	11/a	11/ d
Tea tree plantation [#]	Vegetation Zone 7	n/a	n/a	n/a
Exotic grassland [#]	Vegetation Zone 8	n/a	n/a	n/a
AL. C	•	•	•	

Notes:

* Future rehabilitation areas assessed as if at benchmark levels.

[#]Not further assessed in this BDAR.

^ It is noted that the approved rehabilitation plan allocates these areas to be representative of PCT 1209 (Soft Twig-rush Sedgeland of North Coast Wallum Swamps) however, this PCT is not listed within the BAM-C as occurring within the Burringbar-Conondale Ranges (SEQ03) subregion of the South Eastern Queensland IBRA bioregion. For the purposes of this BDAR, Vegetation Zone 6 has been allocated to **PCT 1808** (Estuarine reedland) which is considered to more closely describe the vegetation zone.

3.2.2 Identifying PCTs and TECs

Identification of PCTs and potential TECs on the subject site was completed by comparing data collected from site to:

- 1. detailed descriptions of PCTs and relevant geographic distributions within the BioNet Vegetation Classification;
- 2. detailed descriptions of TECs on the OEH website;
- 3. survey data and/or individual species records held in BioNet; and
- 4. existing maps of native vegetation in the area i.e. Tweed Vegetation Management Strategy.

3.2.3 Vegetation Integrity Assessment (Site Condition)

The survey plots were established around a central 50 m transect as follows:

a) One (1) 400 m² plot (standard 20 m x 20 m) was used to assess all of the composition and structure attributes. The plot used for the floristic vegetation survey (FIGURE 8) was also used as a vegetation integrity plot.

<u>Note</u>: modified 10 m x 40 m plots were required to assess vegetation along drainage lines due to the thin and linear nature of this vegetation.

- b) One (1) 1,000 m² plot (standard 20 m x 50 m) was used to assess the function attributes: number of large trees, stem size class, tree regeneration, length of logs, high threat exotic weed cover and number of trees with hollows.
- c) Five (5) 1 m² sub-plots are used to assess average litter cover (and other optional groundcover components) for the plot.

The composition, structure and relevant function attributes listed in **TABLE 3** below were assessed.

TABLE 3 GROWTH FORM GROUPS AND ATTRIBUTES USED TO ASSESS THE COMPOSITION, STRUCTURE AND FUNCTION COMPONENTS OF VEGETATION INTEGRITY

Growth form groups used to assess composition and structure	Attributes used to assess function
a) Tree	a) Number of large trees
b) Shrub	b) Tree regeneration
c) Grass and grass like	c) Tree stem size class
d) Forb	d) Total length of fallen logs
e) Fern	e) Litter cover
f) Other	f) High threat exotic weed cover
	g) Hollow bearing trees

3.3 Results

3.3.1 Vegetation Zones

Surveys of the subject site recorded four (4) distinct native vegetation zones as described below (FIGURE 8):

- <u>Vegetation Zone 1: Mid-high swamp sclerophyll forest (Casuarina glauca) to 18m</u>. This zone occurs along drainage lines throughout the subject site and comprised almost entirely of a sub-mature Swamp oak (Casuarina glauca) to a height of 18m. The mapped extent of this vegetation zone on the subject site covers a total area of approximately 4.9 ha of which 1.89 ha occurs within the proposed expansion footprint.
- <u>Vegetation Zone 2: Mid-high regenerating swamp sclerophyll forest (Casuarina glauca) +/- Mangroves (Avicennia marina) to 5-10m</u>. This zone occurs along drainage lines throughout the subject site and comprised of a mixture of a sub-mature Swamp oak and Grey mangrove (Avicennia marina) to a height of 5-10m. The mapped extent of this vegetation zone on the subject site covers a total area of approximately 2.07 ha of which 1.10 ha occurs within the proposed expansion footprint.
- <u>Vegetation Zone 3: Tall swamp sclerophyll forest (Melaleuca quinquenervia,</u> <u>Cinnamomum camphora) to 22m</u>. This zone occurs in the northern portion of the site and is comprised of a mixture of Broad-leaved paperbark (Melaleuca quinquenervia) and the introduced Camphor laurel (Cinnamomum camphora). The mapped extent of this vegetation zone on the subject site covers a total area of

approximately 0.86 ha of which 0.57 ha occurs within the proposed expansion footprint.

- <u>Vegetation Zone 4: Tall rushland/reedland (*Typha orientalis*) to 2m.</u> This zone occurs along drainage lines in the southern portion of the subject site and is comprised almost entirely of Broadleaf cumbungi (*Typha orientalis*) to a height of up to 2m. The mapped extent of this vegetation zone on the subject site covers a total area of approximately 0.09 ha, all of which occurs within the proposed expansion footprint.
- <u>Vegetation Zone 5: Riparian rehabilitation areas.</u> This zone occurs along the margins of the existing Tweed Sand Plant (TSP) operation and is comprised of areas that are currently proposed to be rehabilitated to be representative of Swamp oak forest. The mapped extent of this vegetation zone on the subject site covers a total area of approximately 2.85 ha of which 0.47 ha occurs within the proposed expansion footprint.
- <u>Vegetation Zone 6: Wetland rehabilitation areas.</u> This zone occurs within the margins of the existing Tweed Sand Plant (TSP) operation and is comprised of areas that are currently proposed to be rehabilitated to wetland vegetation. The mapped extent of this vegetation zone on the subject site covers a total area of approximately 2.85 ha of which 1.59 ha occurs within the proposed expansion footprint.

This determination has been made with consideration of soil type, vegetation types occurring in similar locations in the locality, regenerating native species (where present) and community structure and descriptive attributes provided in the BioNet Vegetation Classification. Two (2) additional vegetation zones (Vegetation Zone 7 and Vegetation Zone 8) were identified on the subject site but was comprised entirely of the exotic or planted species and were not further assessed.

3.3.2 Applicable PCT and TEC

In accordance with Paragraph 4.2.2(a) the most likely PCT that would have occurred prior to disturbance has been determined, as the subject vegetation has been highly modified to the extent that it has reduced species richness and is missing structural layers.

Also as discussed, vegetation zones 5 and 6 are comprised of land required to be rehabilitated under existing sand extraction approvals and have been allocated to relevant PCTs.

PCTs are classified based on vegetation types occurring within the Interim Biogeographic Regionalisation for Australia (IBRA) subregions, as developed by the Commonwealth government. The IBRA framework divides Australia landscapes into bioregions and subsequently subregions based on common features such as climate, geology, landform, and vegetation. It is noted that PCT descriptions are still undergoing revision and many remain undescribed for the SEQ - Clarence Lowlands IBRA subregion.

The plant community identification function within the BioNet Vegetation Classification database was utilised to assist with PCT identification. Details of the vegetation formation (Keith 2004) and dominant species observed within the upper stratum, mid stratum and ground stratum were entered into the system. Data collected from the site was then compared to the resulting PCT descriptions.

Vegetation Zone 1: Mid-high swamp sclerophyll forest (Casuarina glauca) to 18m.

Vegetation Zone 1 is considered to be best represented by Plant Community Type (PCT) 1235 (Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion) as described within the BioNet Vegetation Classification (OEH 2021).

PCT 1235 is considered to be representative of the TEC Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner bioregions as listed within schedules of the BC Act (2016) and by definition has a high conservation status.

<u>Vegetation Zone 2: Mid-high regenerating swamp sclerophyll forest (Casuarina glauca) +/-</u> <u>Mangroves (Avicennia marina) to 5-10m</u>

Vegetation Zone 2 is also considered to be best represented by Plant Community Type (PCT) 1235 (Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion) as described within the BioNet Vegetation Classification (OEH 2021).

PCT 1235 is considered to be representative of the TEC Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner bioregions as listed within schedules of the BC Act (2016) and by definition has a high conservation status.

<u>Vegetation Zone 3: Tall swamp sclerophyll forest (Melaleuca quinquenervia, Cinnamomum</u> <u>camphora) to 22m</u>

Vegetation Zone 3 is considered to be best represented by Plant Community Type (PCT) PCT 1064 (Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion) as described within the BioNet Vegetation Classification (OEH 2021).

PCT 1064 is considered to be representative of the TEC Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions as listed within schedules of the BC Act (2016) and by definition has a high conservation status.

Vegetation Zone 4: Tall rushland/reedland (Typha orientalis) to 2m

In accordance with Paragraph 5.2.1.4(a) the most likely PCT that would have occurred prior to disturbance has been determined, as the subject vegetation has been highly modified to the extent that it has reduced species richness and is missing structural layers. Vegetation Zone 4 is highly disturbed but is considered to have been derived from Plant Community Type (PCT) 780 (Coastal floodplain sedgelands, rushlands, and forblands of the North Coast) as described within the BioNet Vegetation Classification (OEH 2021).

PCT 780 is considered to be representative of the TEC Freshwater Wetlands on Coastal Floodplains of the NSW North Coast, Sydney Basin and South-east Corner Bioregions as listed within schedules of the BC Act (2016). The conservation status of this highly disturbed vegetation on the subject site is considered to be significantly lowered however to satisfy Tweed Shire Council Vegetation Zone 4 has been considered to be representative of this TEC.

<u>Vegetation Zone 5: Riparian rehabilitation areas.</u> This zone is currently proposed to be rehabilitated to be representative of PCT 1235 (Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion) after completion of the current sand extraction operations, in accordance with the approved Rehabilitation and Landscape Management Plan (JWA 2021).

PCT 1235 is considered to be representative of the TEC Swamp Oak Floodplain Forest of the NSW North Coast, Sydney Basin and South East Corner bioregions as listed within schedules of the BC Act (2016) and by definition has a high conservation status.

<u>Vegetation Zone 6: Wetland rehabilitation areas.</u> This zone is currently proposed to be rehabilitated to wetland vegetation, in accordance with the approved Rehabilitation and Landscape Management Plan (JWA 2021). Vegetation Zone 6 has been allocated to PCT 1808 (Estuarine reedland).

PCT 1808 is not considered to be representative of any TECs listed within schedules of the BC Act (2016).

3.3.3 Vegetation Integrity (Site Condition) Score

3.3.3.1 Background

To determine the vegetation integrity score, the composition score, structure score and function score were calculated by entering the collected plot survey data into the online BAM Calculator (00022641/BAAS18069/20/00022642/Revision:0). The relevant completed BAM Calculator workings are summarised below and completed data sheets are provided as APPENDIX 2.

As previously discussed, and at the request of TSC and BCD, 0.47 ha of riparian land required to be rehabilitated as PCT 1235 and 1.59 ha of land required to be rehabilitated as wetland vegetation (allocated to PCT 1808) under existing sand extraction approvals have been included as vegetation zones and assessed as if at benchmark levels for the relevant PCTs.

3.3.3.2 Composition Condition

Vegetation Zone 1 (Plot 1)

Item	Tree	Shrub	Grass & Grass Like	Forb	Fern	Other
Benchmark	7	8	8	6	2	4
Observed mean (x)	3	0	7	1	1	0
Unweighted composition score (UCS _i)	45.5	0	97.9	5.5	59.1	0
Weighted composition score (WCS _i)	9.1	0	22.4	1	3.4	0
Dynamic weighting (w _i)	0.2	0.23	0.23	0.17	0.06	0.11

Composition condition score = 35.8

Vegetation Zone 2 (Plot 2 & Plot 3)

Item	Tree	Shrub	Grass & Grass Like	Forb	Fern	Other
Benchmark	7	8	8	6	2	4
Observed mean (x)	3.5	0	1.5	1	0	1
Unweighted composition score (UCS _i)	59.1	0	7.4	5.5	0	14.6
Weighted composition score (WCS _i)	11.8	0	1.7	1	0	1.7
Dynamic weighting (w _i)	0.2	0.23	0.23	0.17	0.06	0.11

Composition condition score = 16.1

Vegetation Zone 3 (Plot 4)

ltem	Tree	Shrub	Grass & Grass Like	Forb	Fern	Other
Benchmark	8	6	7	5	2	6
Observed mean (x)	7	3	2	1	2	6
Unweighted composition score (UCS _i)	97.9	59.1	19.7	8.6	100	100
Weighted composition score (WCS _i)	23	10.4	4.1	1.3	5.9	17.6
Dynamic weighting (w _i)	0.24	0.18	0.21	0.15	0.06	0.18

Composition condition score = 62.3

Vegetation Zone 4 (Plot 5)

Item	Tree	Shrub	Grass & Grass Like	Forb	Fern	Other
Benchmark	7	8	8	6	2	4
Observed mean (x)	0	0	6	0	0	0
Unweighted composition score (UCS _i)	0	0	91.9	0	0	0
Weighted composition score (WCS _i)	0	0	21	0	0	0
Dynamic weighting (w _i)	0.2	0.23	0.23	0.17	0.06	0.11

Composition condition score = 21

3.3.3.3 <u>Structure Condition</u>

Vegetation Zone 1 (Plot 1)

ltem	Tree	Shrub	Grass & Grass Like	Forb	Fern	Other
Benchmark	31	12	107	2	0	2
Observed mean (x)	21.2	0	38	0.2	1	0
Unweighted structure score (USS _i)	86.1	0	31.5	1.6	0	0
Weighted structure score (WSS _i)	17.3	0	21.9	0	0	0
Dynamic weighting (w _i)	0.2	0.08	0.69	0.01	0	0.01

Structure condition score = 39.3

Vegetation Zone 2 (Plot 2 & Plot 3)

ltem	Tree	Shrub	Grass & Grass Like	Forb	Fern	Other
Benchmark	31	12	107	2	0	2
Observed mean (x)	38.1	0	8	0.6	0	0.6
Unweighted structure score (USSi)	100	0	0.8	18.1	0	22
Weighted structure score (WSSi)	20.1	0	0.5	0.2	0	0.3
Dynamic weighting (wi)	0.2	0.08	0.69	0.01	0	0.01

Structure condition score = 21.2

Vegetation Zone 3 (Plot 4)

Item	Tree	Shrub	Grass & Grass Like	Forb	Fern	Other
Benchmark	37	12	82	2	1	4
Observed mean (x)	69.7	1.4	5.5	30	5.5	14.6
Unweighted structure score (USSi)	100	2.3	0.6	100	100	100
Weighted structure score (WSSi)	26.8	0.2	0.3	1.4	0.7	2.9
Dynamic weighting (wi)	0.27	0.09	0.59	0.01	0.01	0.03

Structure condition score = 32.4

Vegetation Zone 4 (Plot 5)

Item	Tree	Shrub	Grass & Grass Like	Forb	Fern	Other
Benchmark	31	12	107	2	0	2
Observed mean (x)	0	0	80.4	0	0	0
Unweighted structure score (USSi)	0	0	92	0	0	0
Weighted structure score (WSSi)	0	0	63.9	0	0	0
Dynamic weighting (wi)	0.2	0.08	0.69	0.01	0	0.01

Structure condition score = 63.9

3.3.3.4 Function Condition

Vegetation Zone 1 (Plot 1)

ltem	Number of Large Trees	Litter Cover	Coarse Woody Debris	Stem Size Class	Regeneration Stems <5cm DBH	High Threat Weed Cover
Benchmark	1	40	12	4	Present	
Observed mean (x)	0	0	0	3	1	0.07
Weighted function score (WFSi)	0	0	0	13.8	15	
Weighting (wi)	0.35	0.15	0.2	0.15	0.15	

Function condition score = 28.8

Vegetation Zone 2 (Plot 2 & Plot 3)

ltem	Number of Large Trees	Litter Cover	Coarse Woody Debris	Stem Size Class	Regeneration Stems <5cm DBH	High Threat Weed Cover
Benchmark	1	40	12	4	Present	
Observed mean (x)	0	39	0	2.5	1	7.0
Weighted function score (WFSi)	0	15	0	11.9	15	
Weighting (wi)	0.35	0.15	0.2	0.15	0.15	

Function condition score = 41.8

Vegetation Zone 3 (Plot 4)

ltem	Number of Large Trees	Litter Cover	Coarse Woody Debris	Stem Size Class	Regeneration Stems <5cm DBH	High Threat Weed Cover
Benchmark	5	42	44	4	Present	
Observed mean (x)	2	76	36	2	1	73.5
Weighted function score (WFSi)	14	15	19.2	8.9	15	
Weighting (wi)	0.35	0.15	0.2	0.15	0.15	

Function condition score = 72

Vegetation Zone 4 (Plot 5)

Item	Number of Large Trees	Litter Cover	Coarse Woody Debris	Stem Size Class	Regeneration Stems <5cm DBH	High Threat Weed Cover
Benchmark	1	40	12	4	Present	
Observed mean (x)	0	0	0	0	0	0
Weighted function score (WFSi)	0	0	0	0	0	
Weighting (wi)	0.35	0.15	0.2	0.15	0.15	

Function condition score = 0

Vegetation Zone	РСТ	TEC	Vegetation Integrity Score (out of 100)		
1	1235	✓	34.3		
2	1235	✓	24.3		
3	1064	✓	52.6		
4	780	✓	11		
5*	1235	✓	100		
6*	1808	~	100		
Notes:		•			
* Future rehabilitat	ion areas a	ssessed as if	at benchmark levels.		

3.3.3.5 Final Vegetation Integrity Score

4 THREATENED SPECIES ASSESSMENT

4.1 Introduction

This section of the BDAR assesses habitat suitability for Threatened species (in accordance with Section 5 of the BAM). In particular, this section of the BDAR identifies:

- ecosystem credit species associated with PCTs on the development site including:
 - $\circ~$ list of species derived (in accordance with Sections 5.1.1 and 5.2.1 of the BAM); and
 - \circ justification for exclusion of any ecosystem credit species predicted (in accordance with Sections 5.2.1 and 5.2.2 of the BAM).
- species credit species on the development site (in accordance with Sections 5.1 to 5.3 of the BAM) including:
 - list of candidate species;
 - o justification for inclusions and exclusions based on habitat features;
 - indication of presence based on targeted survey or expert report;
 - details of targeted survey technique, effort, timing and weather;
 - species polygons; and
 - biodiversity risk weighting for the species.

4.2 Threatened Plant Surveys

4.2.1 Methods

Targeted threatened plant surveys were completed on the subject site by one (1) accredited assessor/suitably qualified ecologist for approximately 6 hours on the 27^{th} August 2020, approximately 6 hours on the 27^{th} October 2020, and for a total of approximately 12 hours between the 26^{th} - 28^{th} January 2021.

Target species included: Marblewood, Scented Acronychia, Dwarf Heath Casuarina, White lace flower, Hairy joint grass, Mark's Cassia, Swamp Foxglove, Water nutgrass, Davidson's Plum, Spider orchid, Thorny pea, Red-fruited ebony, Shiny-leaved ebony, Small-leaved tamarind, Basket fern, Square-stemmed spike-rush, Green-leaved rose walnut, Ball nut, Pink nodding orchid, Sweet myrtle, White yiel yiel, Isoglossa, Fraser's screw fern, Rough-shelled bush nut, Ripple-leaf muttonwood, Red-flowered king of the fairies, Yellow-flowered king of the fairies, Southern ochrosia, *Oldenlandia galioides*, Brown fairy-chain orchid, Southern swamp orchid, Brush sauropus, Red lilly pilly and Durobby.

The surveys were completed in accordance with the NSW Guide to Surveying Threatened Plants (OEH 2016) and utilised the parallel field-traverse method. The parallel field-traverse survey technique involved searching along a grid of parallel traverses a set 10 m apart. The surveyor walked at a reasonable walking pace while making a visual sweep either side of the traverse.

4.2.2 Results

No threatened plant species were recorded from the subject site.

4.3 Threatened Fauna Surveys

4.3.1 Methods

4.3.1.1 <u>Background</u>

Targeted fauna surveys were completed in conjunction with the flora surveys by accredited assessor/suitably qualified ecologist on 27th August and 27th October 2020. Additional targeted surveys were completed over the three (3) nights of the 26th - 28th January 2021. Techniques utilised during the fauna survey are described below.

Weather details prior to and during the targeted surveys (where available) is summarised in **TABLE 4** below.

	Temp (°C)			Max wind gust		
Date	Min	Max	Rain (mm)	Direction	Speed (km/hr)	Time
23 rd January 2021	18.3	28.2	0	NE	28	13:25
24 th January 2021	18.6	28.5	0	NE	31	16:33
25 th January 2021	20.8	27.7	2.8	NNE	26	15:39
26 th January 2021	18.5	28.5	0	N	30	21:31
27 th January 2021	20.8	29.7	0	NNE	30	11:08
28 th January 2021	22.8	29.6	1.2	SE	44	10:21
Notes:			•			
Source: Station 040717	- Coolangatt	a (approx. 10	km from the si	ite)		
Survey dates are shown	in Bold					

TABLE 4
WEATHER CONDITIONS PRIOR TO AND DURING SITE SURVEYS
(SOURCE: BOM CLIMATE DATA ONLINE)

4.3.1.2 <u>Targeted Bird Surveys</u>

Targeted bird surveys were completed using a combination of the area search method and the species-time curve approach, where the observer walked through the site and the survey session ceased when no additional species were identified within a 5 minute period. Species targeted included: Terek Sandpiper and White-bellied sea-eagle.

4.3.1.3 Spotlighting

Spotlighting was undertaken by one (1) accredited assessor/principal ecologist and two (2) field assistants for approximately 3.5 hours over the three (3) nights of the 26th - 28th January 2021 - equating to a total of 31.5 hours spotlighting. Target species included: Eastern pygmy-possum, Wallum froglet, Green-thighed Frog, Olongburra frog and Mitchell's rainforest snail.

During the above spotlighting surveys the site was traversed on foot with a large spotlight used to detect 'eye-shine' from nocturnal fauna. The observer walked at approximately 1 km/h, allowing intensive listening as an adjunct to visual detection.

4.3.1.4 Call playback

Call playback was completed on the site in conjunction with the spotlighting surveys over the three (3) nights of the 26th - 28th January 2021. Target species included: Wallum froglet, Green-thighed Frog and Olongburra frog. During the call playback surveys calls of the target species were broadcast, and then followed by a five (5) minute listening period.

4.3.1.5 Microchiropteran Bat Detection

Anabat Express ultrasonic bat detector units were set at two (2) locations on the subject site. The two (2) units were deployed for the three (3) nights of the 26th - 28th January 2021 - equating to 6 trap nights.

The bat detector units were used to record calls from the Subject Land between the hours of dusk (approx. 1800h) and dawn (approx. 0600h). The data from these recordings was sent for analysed by an expert in echolocation call identification. However, unfortunately, the data from these recordings was found to be corrupted and could not be analysed.

4.3.1.6 <u>Active Searching</u>

Any logs, sheets of tin, cardboard, bark and leaves were overturned in search of reptiles and amphibians while traversing the site. Searches were undertaken for diggings, scats, and bones. Eucalypt trees were inspected for signs of koala activity such as scratch marks and scats. Active observation of bird and amphibian activity, both aurally and visually, was undertaken during the site visits. Target species included: Koala and Mitchell's rainforest snail.

4.3.1.7 Incidental observations

All incidental records of fauna utilising the study area were recorded. Discoveries of scratch marks on trees, scats, footprints, diggings, bones and other animal traces were noted.

4.3.2 Results

4.3.2.1 Amphibians

Amphibians occurring in the region are poikilothermic, predominantly insectivorous and generally require free water for reproduction, with the exception of two highland genera (*Assa darlingtoni* and *Philoria* spp.) The habitat requirements of most species are unlikely to be determined by forest cover or floristics but are more strongly influenced by factors such as climate, distance to water bodies, riparian vegetation, hydrological and morphological characteristics of water bodies and the availability of suitable micro-habitat for aestivation and shelter.

The majority of species that occur within the region lay eggs in or near temporary or permanent water bodies and rely on free water for larval development and metamorphosis. Of these species, a few are dependent on forested habitats beyond the riparian zone or beyond areas of temporary inundation. These species include the Red-eyed tree frog (*Litoria chloris*), Leseuer's frog (*Litoria leseueri*), Fletchers frog (*Lechriodus fletcheri*) and the Barred frogs of the *Mixophyes* genus.

Grasslands provide suitable habitat for a range of Amphibian species, particularly along drainage depressions and soaks. Species commonly encountered in grassland communities include the Common eastern froglet, Eastern sign bearing froglet (*Crinia parinsignifera*), Striped marsh frog (*Limnodynastes peronii*), Spotted grass frog (*Limnodynastes tasmaniensis*), Eastern dwarf tree frog, Rocket frog (*Litoria nasuta*), Whistling tree frog (*Litoria verreauxii*) and the introduced Cane toad* (*Rhinella marina*). These species may be observable on the site following periods of significant rainfall.

Species which typically occur in low elevation rainforest and permanent streams such as the Giant barred frog (*Mixophyes iteratus*) are unlikely to occur at the subject site.

No threatened amphibian species were recorded from the subject site.

4.3.2.2 <u>Reptiles</u>

As reptiles are poikilothermic, and predominantly insectivorous or carnivorous, their habitat requirements are less directly determined by vegetation species composition than other taxa which feed directly on plants. Reptile distributions are strongly influenced by structural characteristics of the vegetation, climate and factors affecting thermoregulation such as shade and availability of shelter and basking sites (Smith *et al* 1994).

In a survey of the moist forest herpetofauna of North-eastern NSW, Smith *et al* (1989) found that few species discriminated between rainforest and wet sclerophyll forest, however, most species exhibited a response to differences in elevation and the availability of microhabitat components and other substrates.

The availability of microhabitats, of varying thermal properties is particularly important for most reptile species, as behavioural thermoregulation (regulation of body heat) is important in controlling critical body functions such as digestion, foraging activity and reproduction.

Reptile diversity and abundance is often (but not always) significantly higher in drier habitat types, particularly those with a wide variety of ground substrate microhabitats. This contrasts markedly with the distribution patterns of birds, and most mammals.

The single limiting factor in terms of species diversity in coastal vegetation is the lack of shelter sites (e.g. logs, tree hollows and decorticating bark). Such habitat components characterise eucalypt forests and woodlands, where species diversity may be much higher, depending on disturbance factors.

The subject site is generally considered to provide poor to moderate quality habitat for the majority of native reptile species due to the general lack of shelter and basking sites; fallen logs for shelter; forested areas with good canopy and leaf litter development; and reliable sources of prey.

No threatened reptile species were recorded from the subject site.

4.3.2.3 <u>Birds</u>

The significance of near coastal environments of the N.S.W. Far North Coast and South-East Queensland as over-wintering habitat for migratory birds has been established by many observers and bird banders including Keast (1968), Robertson (1973), Gravatt (1974), Porter (1982) and Robertson and Woodall (1983). These patterns may be attributable to the relatively high winter temperatures and long growing season of this region compared with the rest of south-eastern Australia (Fitzpatrick and Nix 1973; Edwards 1979; Nix 1982; Specht *et al* 1981).

Many insectivorous birds from higher latitudes and elevation over-winter in the locality. These include species such as the Fantail cuckoo (*Cacomantis flabelliformis*), Sacred kingfisher (*Todiramphus sanctus*), Rainbow bee-eater (*Merops ornatus*), Noisy pitta (*Pitta versicolor*), Tree martin (*Petrochelidon nigricans*), Black-faced cuckoo-shrike (*Coracina novaehollandiae*), Cicada bird (*Coracina tenuirostris*), Golden whistler (*Pachycephala pectoralis*), Rufous whistler (*Pachycephala rufiventris*), Rose robin (*Petroica rosea*), Grey fantail (*Rhipidura albiscapa*), White-throated gerygone (*Gerygone olivacea*), Silvereye (*Zosterops lateralis*), Olive-backed oriole (*Oriolus sagittatus*) and Spangled drongo (*Dicrurus bracteatus*).

Birds such as honeyeaters and lorikeets are Blossom nomads (*ibid*.). These birds move locally in response to variation in the availability of nectar and or pollen, important components in their diet. Porter (1982) highlights the importance of Forest red gum, Broad-leaved paperbark and Coast banksia for Scaly-breasted (*Trichoglossus chlorolepidotus*) and Rainbow (*Trichoglossus moluccanus*) lorikeets as these species flower during the lorikeet's winter breeding period. A sequence of important nectar bearing plants in the genera Eucalyptus, Banksia, Melaleuca and Callistemon provide a continuity of food for nectarivorous birds.

Studies of bird usage in rainforest remnants by Holmes (1987), Connelly and Specht (1988) and Lott & Duigan (1993) indicate that the diversity and abundance of birds is related to the size of the rainforest patches and their degree of isolation from major areas of native forest. Lott & Duigan (1993) and Howe *et al* (1981) also note that sites with a higher diversity of vegetation and those which are closer to water generally support a greater diversity of birds. Locally nomadic and migratory rainforest species such as the Wompoo (*Ptilinopus magnificus*), Rose-crowned (*Ptilinopus regina*) and Superb fruit-doves (*Ptilinopus superbus*), Common koel (*Eudynamys orientalis*) and Black-faced cuckoo-shrike are known to use scattered areas of habitat as "stepping-stones" between more intact areas of forest (Date *et al* 1992; Lott & Duigan 1993).

The lack of intact vegetation on and adjacent to the subject site is likely to result in a low diversity of resident and nomadic birds occurring on the site over the year. Habitat occurring adjacent to the subject may provide foraging resources for nectarivorous birds due to the occurrence of Eucalypt and Melaleuca species. The site does not provide forage resources for frugivorous birds.

No threatened bird species were recorded from the subject site.

4.3.2.4 <u>Mammals</u>

Small terrestrial mammals generally occur in highest densities in association with a complex vegetation structure. A dense understorey layer, which provides shelter from predators and provides nesting opportunities, is particularly important.

In general, medium-large terrestrial mammals such as macropods select habitats which provide a dense cover for shelter and refuge and open areas for feeding. The larger species tend to occupy drier more open habitats: the smaller species, moister and more densely vegetated habitats.

All Arboreal mammals that occur in the region (with the exception of the Koala) utilise tree hollows for nesting and shelter (although the Common ringtail possum is not dependent on hollows). Smith & Lindenmeyer (1988) consider that shortage of nest hollows is likely to limit arboreal mammal populations where density of hollow bearing trees is less than 2 to 8 trees per hectare.

Arboreal folivores (*e.g.* Common ringtail possum, Greater glider) are widespread and abundant but exhibit local variation in response to such factors as tree species composition, foliage protein and fibre levels, leaf toughness, toxins, forest structure and the availability of shelter sites. Arboreal folivores are expected to be most abundant in areas of high productivity, high soil fertility and moderate climate, in conjunction with adequate shelter and suitable foraging substrate.

Arboreal nectarivore/insectivores feed on a wide variety of plant and insect exudates including the nectar of flowering eucalypts, and shrubs such as Banksia and Acacia sp. These species also feed extensively on insects, particularly under the shedding bark of eucalypts. The distribution of nectarivore/insectivores is considered to be related to the abundance of nectar and pollen producing plants, the abundance of bark shedding eucalypts which harbour insect prey, and the occurrence of sap and gum exudate producing trees (Sap feed trees) and shrubs (*e.g.* Acacia sp.). Arboreal nectarivores and insectivores are generally hollow dependent species.

Trees with hollows necessary for hollow-dependent mammals were not recorded on or adjacent to the subject site. The vegetation on the subject site has historically been cleared and is an early regrowth phase and does not currently represent forage habitat for koalas or any other native arboreal mammal species. The lack of structural complexity and habitat diversity of the subject site is likely to result in a low diversity and abundance of ground dwelling mammals. Highly mobile and/or disturbance adapted species such as the Eastern grey kangaroo (*Macropus giganteus*) may occasionally utilise the site.

Insectivorous bats, like insectivorous birds, overlap considerably in diet and broad vegetation preferences (Hall 1981), but specialise in foraging in specific layers or substrates within the forest (Crome and Richards 1988). Vegetation on and adjacent to the Subject site is likely to provide forage habitat for a low diversity and abundance of insectivorous bats. Hollow-bearing trees potentially suitable for hollow-dependant bats do not occur on the site.

Suitable roost habitats for the Black flying-fox and Grey-headed flying fox are unlikely to occur on the subject site, however potential forage habitat is provided for these species while Eucalypt species and Paperbarks within the adjacent road reserve are flowering.

4.4 Ecosystem Credit Species

APPENDIX 3 lists the ecosystem credit species that have been derived from the BAM Calculator. Details of required habitat components, geographic limitations, and applicable sensitivity classes for each species is also provided.

Ten (10) derived ecosystem credit species were removed from the assessment due to habitat constraints, geographic limitations, or as PCT (780 - i.e. Vegetation Zone 4) is not required to be offset with regards to ecosystem credits as the vegetation integrity score of this vegetation is below those set out in Paragraph 10.3.1.1 of the BAM. Species that were removed from the candidate species list, along with the rationale behind the decision to remove them, are provided in **TABLE 5**.

The remaining ecosystem credit species were retained as some habitat components (i.e. breeding, foraging or roosting habitat) were present in the assessment area. However, these habitat components were marginal for most species, due to the highly disturbed nature of vegetation communities occurring on the subject site.

Reason for determining that		
Species	species is unlikely to occur on the subject land	Justification
Bar-tailed Godwit (Foraging) (<i>Limosa lapponica baueri</i>)	BAM requirements	The relevant PCT (780 - i.e. Vegetation Zone 4) is not required to be offset with regards to ecosystem credits as the vegetation integrity score of this vegetation is below those set out in Paragraph 10.3.1.1 of the BAM.
Black-tailed Godwit (Foraging) (<i>Limosa limosa</i>)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.
Broad-billed Sandpiper (Foraging) (Limicola falcinellus)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.
Brolga (Grus rubicunda)	BAM requirements	The relevant PCT (780 - i.e. Vegetation Zone 4) is not required to be offset with regards to ecosystem credits as the vegetation integrity score of this vegetation is below those set out in Paragraph 10.3.1.1 of the BAM.
Comb-crested jacana (Irediparra gallinacea)	BAM requirements	The relevant PCT (780 - i.e. Vegetation Zone 4) is not required to be offset with regards to ecosystem credits as the vegetation integrity score of this vegetation is below those set out in Paragraph 10.3.1.1 of the BAM.
Curlew Sandpiper (Foraging) (Calidris ferruginea)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.
Eastern Curlew (Foraging) (Numenius madagascariensis)	BAM requirements	The relevant PCT (780 - i.e. Vegetation Zone 4) is not required to be offset with regards to ecosystem credits as the vegetation integrity score of this vegetation is below those set out in Paragraph 10.3.1.1 of the BAM.
Magpie Goose (Anseranas semipalmata)	BAM requirements	The relevant PCT (780 - i.e. Vegetation Zone 4) is not required to be offset with regards to ecosystem credits as the vegetation integrity score of this vegetation is below those set out in Paragraph 10.3.1.1 of the BAM.
Red Knot (Foraging) (Calidris canutus)	BAM requirements	The relevant PCT (780 - i.e. Vegetation Zone 4) is not required to be offset with regards to ecosystem credits as the vegetation integrity score of this vegetation is below those set out in Paragraph 10.3.1.1 of the BAM.
Sanderling (Foraging) (Calidris alba)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.

TABLE 5SPECIES CREDIT SPECIES REMOVED FROM CANDIDATE SPECIES LIST

4.5 Species Credit Species

APPENDIX 4 lists the species credit species that have been derived from the BAM Calculator. Details of required habitat components, geographic limitations and applicable sensitivity classes for each species is also provided. It is noted that impacts to the degraded area of PCT 780 (Vegetation Zone 4) are not required to be offset with regards to species credits as the vegetation integrity score of this vegetation is below those set out in Paragraph 10.3.2.2 of the BAM.

Targeted surveys were completed for threatened species on the subject site on the 27th August and 27th October 2020, and over the three (3) nights of the 26th - 28th January 2021. The methodology and results of these surveys are discussed in **SECTIONS 4.2 and 4.3**.

Targeted surveys were completed at the appropriate time of year for all species credit species automatically generated by the BAM calculator. One (1) species credit species - Southern Myotis (*Myotis macropus*) - has been assumed to be present however as this species is provided with suitable habitat, and data collected utilising bat detector units was found to be corrupted and could not be analysed.

A number of species credit species were removed from the calculator as either the necessary habitat components (i.e. breeding, foraging or roosting habitat) were absent in the assessment area, or due to geographic limitations, or in accordance with Paragraph 5.2.3.2(a)ii of the BAM as it was determined that the available habitat is substantially degraded such that the species is unlikely to utilise the subject land (or specific vegetation zones). Species that were removed from the candidate species list, along with the rationale behind the decision to remove them, are provided in **TABLE 6**.

All remaining species credit species derived from the BAM Calculator were addressed in detail including consideration of habitat requirements, occurrence of suitable habitat in the assessment area and survey effort required for each species.

Species	Reason for determining that species is unlikely to occur on	Justification
	the subject land	
Bar-tailed Godwit (Breeding) (Limosa lapponica baueri)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.
Barking owl (Breeding) (Ninox connivens)	Habitat constraints	The site does not contain suitable breeding habitat i.e. Hollow bearing trees/living or dead trees with hollows greater than 20 cm diameter.
Black-tailed Godwit (Breeding) (Limosa limosa)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.
Broad-billed Sandpiper (Breeding) (Limicola falcinellus)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.
Brush-tailed phascogale (Phascogale tapoatafa)	Habitat degraded	Habitat on the subject site for this species is considered to be highly degraded due to a history of disturbance (i.e. vegetation clearing and grazing activities). There are only three (3) validated records of this species within the Tweed LGA with the nearest record approx. 17.5km to the south.
Common planigale (Planigale maculata)	Habitat degraded	Habitat on the subject site for this species is considered to be highly degraded due to a history of disturbance (i.e. vegetation clearing and grazing activities). There nearest record occurs approx. 3km to the east.
Curlew Sandpiper (Foraging) (Calidris ferruginea)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.
Eastern Curlew (Breeding) (Numenius madagascariensis)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.
Eastern osprey (Breeding) (Pandion cristatus)	Habitat constraints	The site does not contain suitable breeding habitat i.e. presence of stick- nests in living and dead trees (>15m) or artificial structures within 100m of a floodplain for nesting.
Eastern pygmy possum (Cercartetus nanus)	Habitat degraded	Habitat on the subject site for this species is considered to be highly degraded due to a history of disturbance (i.e. vegetation clearing and grazing activities). There is only one (1) validated records of this species within the Tweed LGA which occurs approx. 3km to the south-east.

TABLE 6SPECIES CREDIT SPECIES REMOVED FROM CANDIDATE SPECIES LIST

Species	Reason for determining that species is unlikely to occur on the subject land	Justification
Glossy black cockatoo (Breeding) (Calyptorhynchus lathami)	Habitat constraints	The site does not contain suitable breeding habitat i.e. hollow bearing trees/living or dead tree with hollows greater than 15 cm diameter and greater than 5m above ground.
Grey-headed flying-fox (Breeding) (Pteropus poliocephalus)	Habitat constraints	No roosting sites (camps) representing breeding habitat occur on the subject land.
Koala (Breeding) (Phascolarctos cinereus)	Habitat constraints	Suitable habitat does not occur on the subject site.
Laced Fritillary (Argynnis hyperbius)	Habitat constraints	The site does not contain suitable habitat i.e. Arrowhead violet (<i>Viola betonicifolia</i>).
Large Bent-winged Bat (Breeding) (Miniopterus orianae oceanensis)	Habitat constraints	Maternity caves are not present on the subject land.
Large-eared pied bat (Chalinolobus dwyeri)	Habitat constraints	The subject site does not contain cliffs or occur within two kilometres of rocky areas containing caves, overhangs, escarpments, outcrops, or crevices, or within two kilometres of old mines or tunnels.
Little Bent-winged Bat (Breeding) (Miniopterus australis)	Habitat constraints	Maternity caves are not present on the subject land.
Little eagle (Breeding) (Hieraaetus morphnoides)	Habitat constraints	No nest trees were observed on the subject site.
Pale-headed snake (Hoplocephalus bitorquatus)	Habitat degraded	Habitat on the subject site for this species is considered to be highly degraded due to a history of disturbance (i.e. vegetation clearing and grazing activities). There are no validated records of this species within the Tweed LGA.
Powerful owl (Breeding) (Ninox strenua)	Habitat constraints	The site does not contain suitable breeding habitat i.e. Hollow bearing trees/living or dead trees with hollows greater than 20 cm diameter.
Regent honeyeater (Breeding) (Anthochaera phrygia)	Habitat constraints	The site does not occur within the mapped breeding areas.
Red Knot (Breeding) (Calidris canutus)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.

Species	Reason for determining that species is unlikely to occur on the subject land	Justification
Sanderling (Breeding) (Calidris alba)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.
Square-tailed kite (Breeding) (Lophoictinia isura)	Habitat constraints	No nest trees were observed on the subject site.
Squirrel glider (Petaurus norfolcensis)	Habitat degraded	Habitat on the subject site for this species is considered to be highly degraded due to a history of disturbance (i.e. vegetation clearing and grazing activities). There are only thirteen (31) validated records of this species within the Tweed LGA with the nearest record approx. 3km to the south-east.
Swift parrot (Breeding) (Lathamus discolor)	Habitat constraints	The site does not occur within the mapped breeding areas.
Terek sandpiper (Breeding) (Xenus cinereus)	Habitat constraints	The subject site is not included on the Threatened migratory shorebird habitat mapping.
White-bellied sea-eagle (Breeding) (Haliaeetus leucogaster)	Habitat constraints	No nest trees were observed on the subject site.
White-crowned snake (Cacophis harriettae)	Habitat constraints	The site does not contain suitable habitat i.e. litter/rocky areas, surface rocks/fallen/standing dead timber including logs, or within 50 m of fallen timber including logs.

5 IMPACT SUMMARY

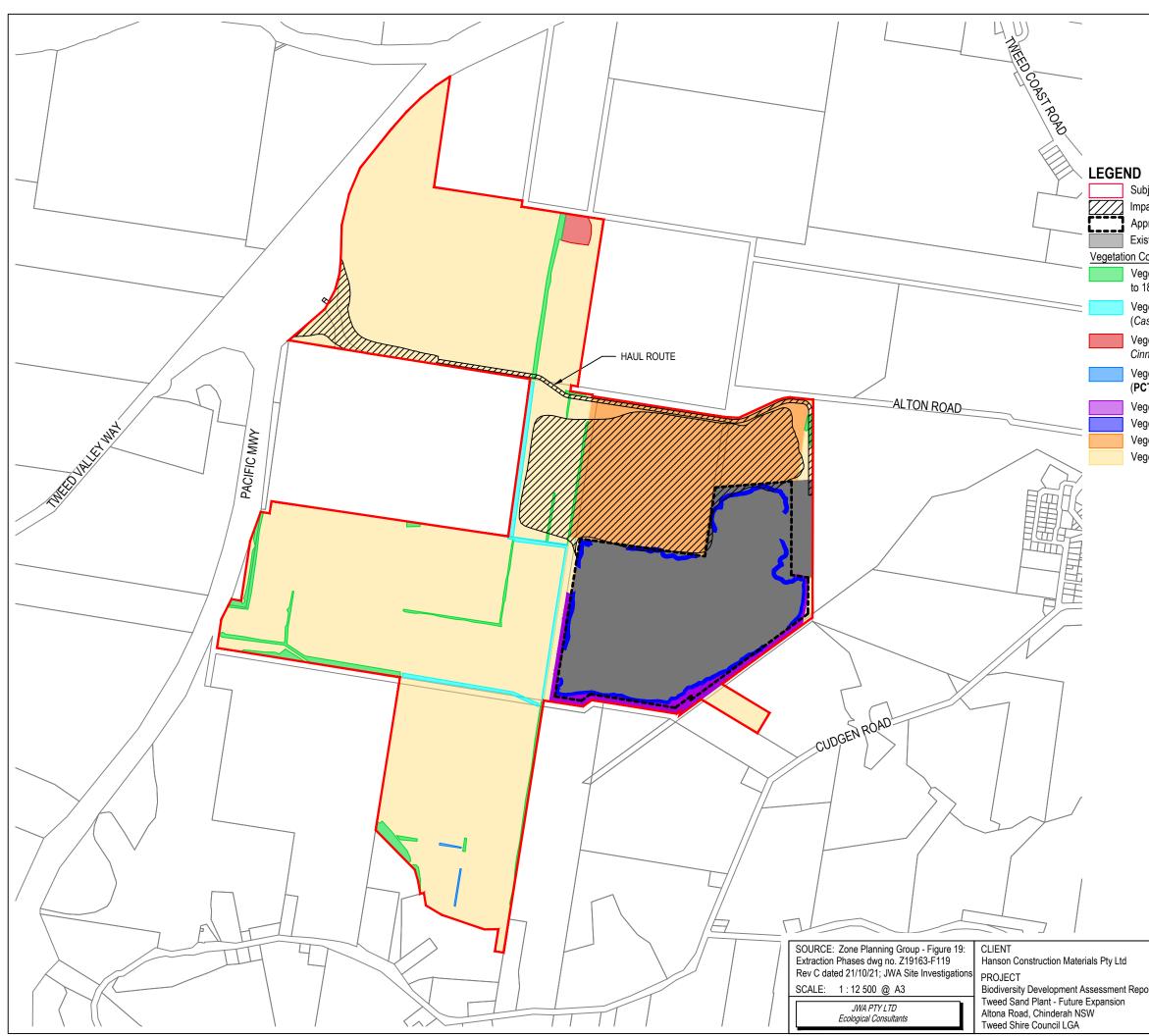
5.1 Introduction

This section of the BDAR identifies, assesses and summarises the likely direct and indirect impacts of the proposed development. Furthermore, impacts of the proposed development are identified that:

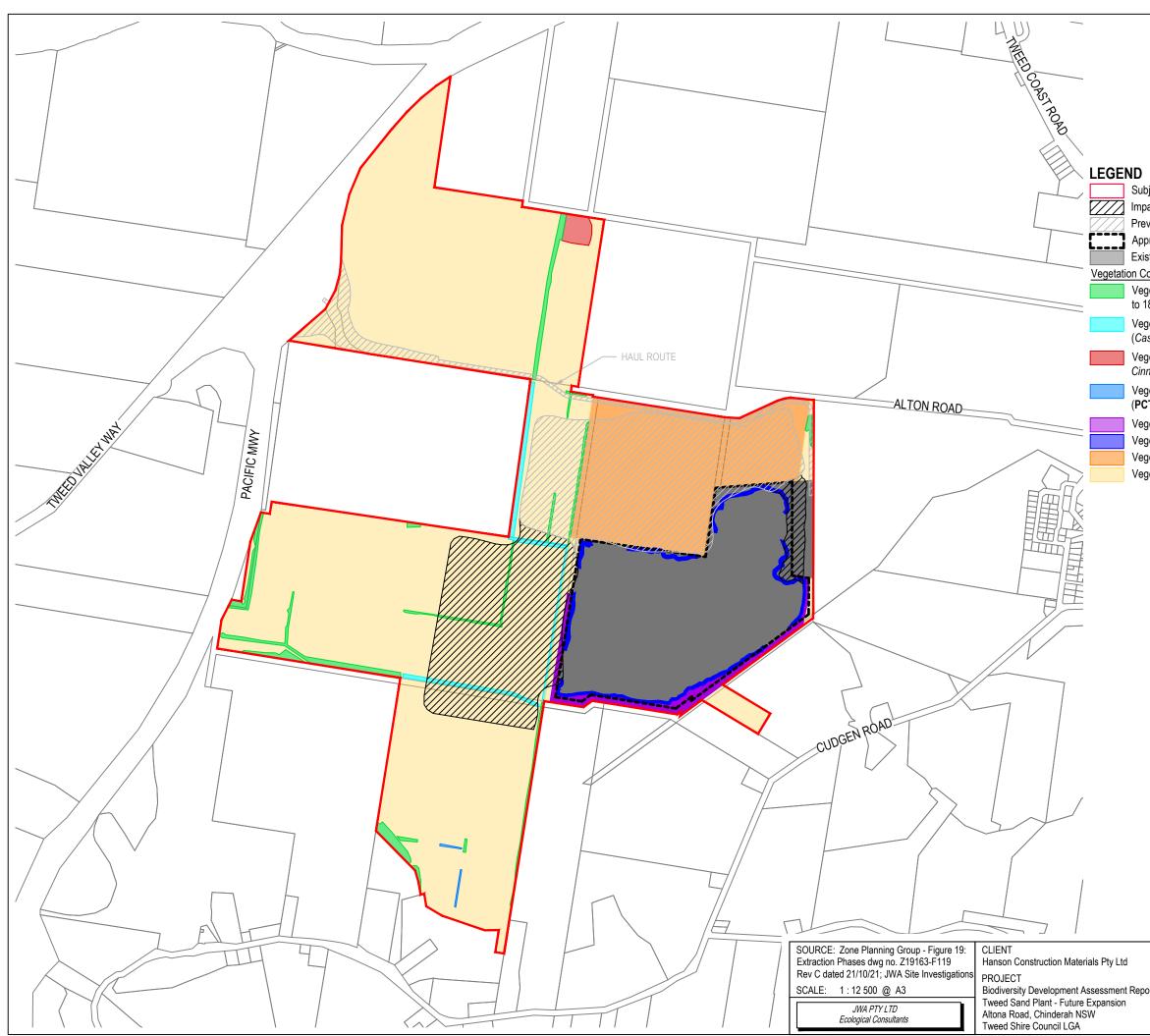
- are considered to be potentially serious and irreversible impacts (in accordance with Section 9.1); and
- require offsets (in accordance with Section 9.2 of the BAM).

Due to the long-term nature of the proposed expansion, this BDAR has been prepared to provide overarching offsetting requirements associated with the proposed sand extraction works on a phase-by-phase basis. Prior to the commencement of sand extraction works within each phase, a phase specific BDAR (or assessment in line with the relevant legislation at that time) will be prepared to accurately assess impacts and offset obligations.

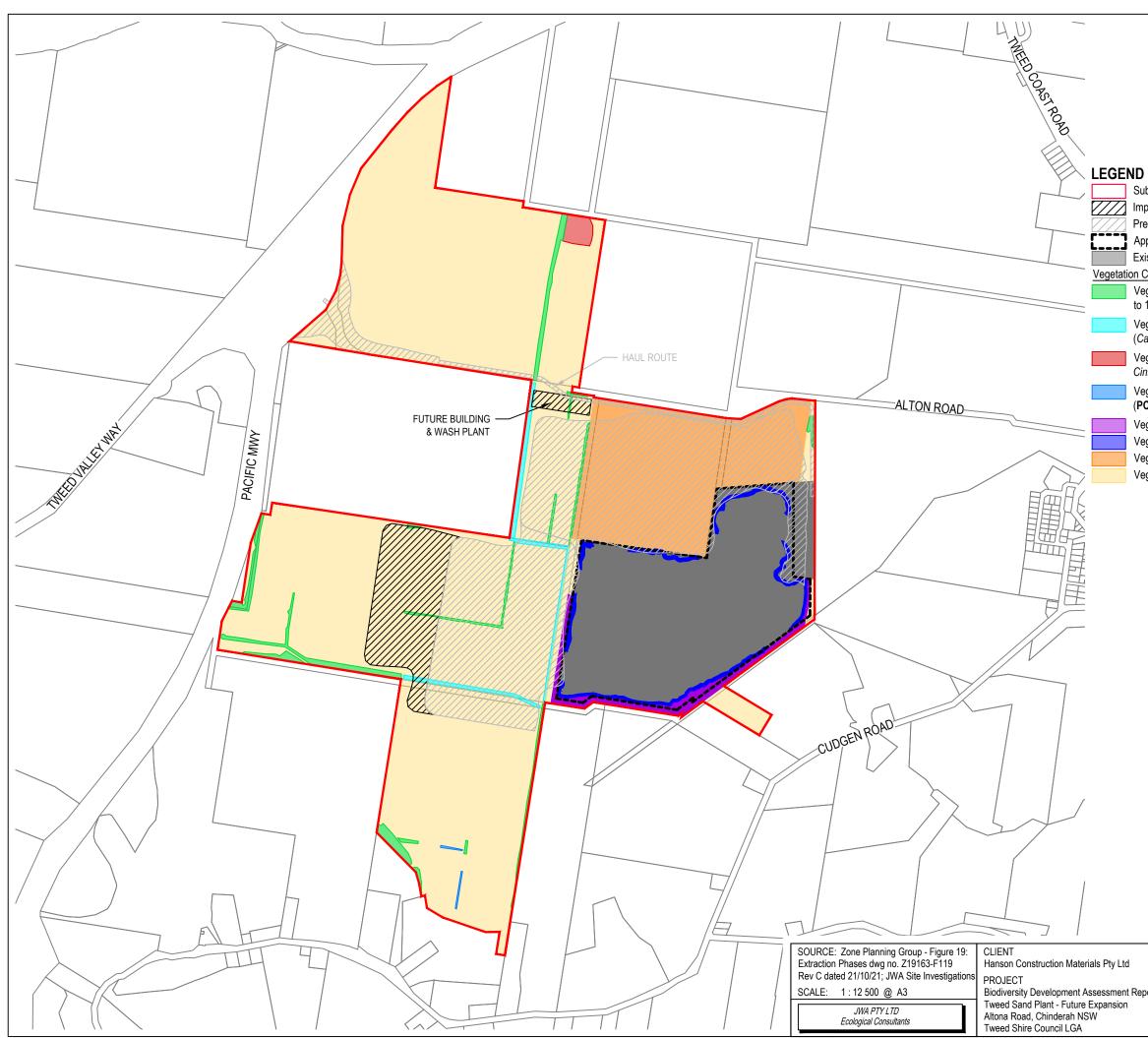
5.2 Direct Impacts on Native Vegetation/Habitat

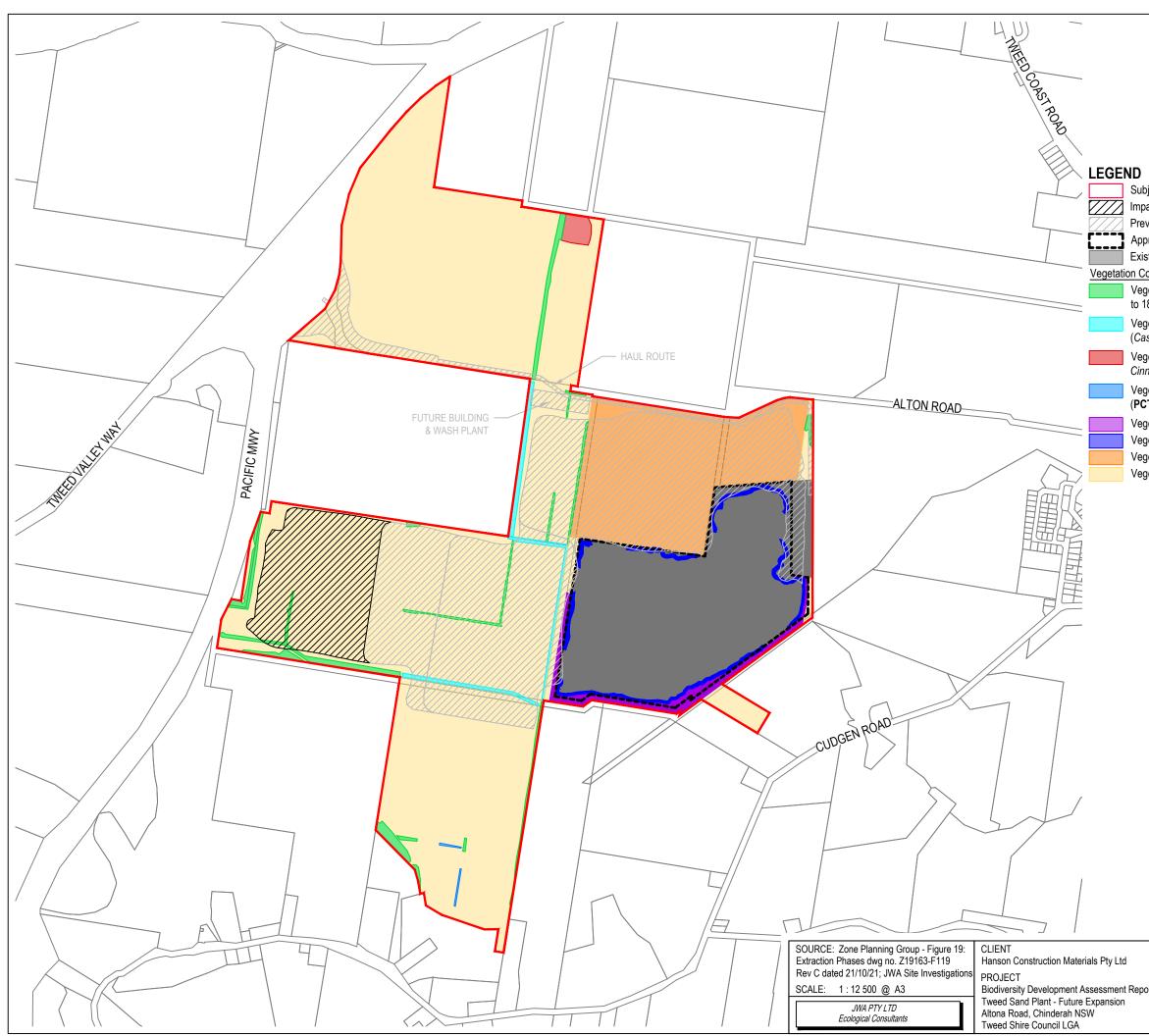

The proposed development will result in the removal of approximately 2.95 ha of PCT 1235, 0.78 ha of PCT 1064 and 0.09 ha of PCT 780. It is noted that the majority of this vegetation has been historically impacted by clearing and/or grazing activities and is currently in a disturbed/degraded state.

The proposed development will result in the removal of a total of 0.47 ha of riparian land required to be rehabilitated as PCT 1235 and 1.59 ha of land required to be rehabilitated as wetland vegetation (allocated to PCT 1808) under existing sand extraction approvals.

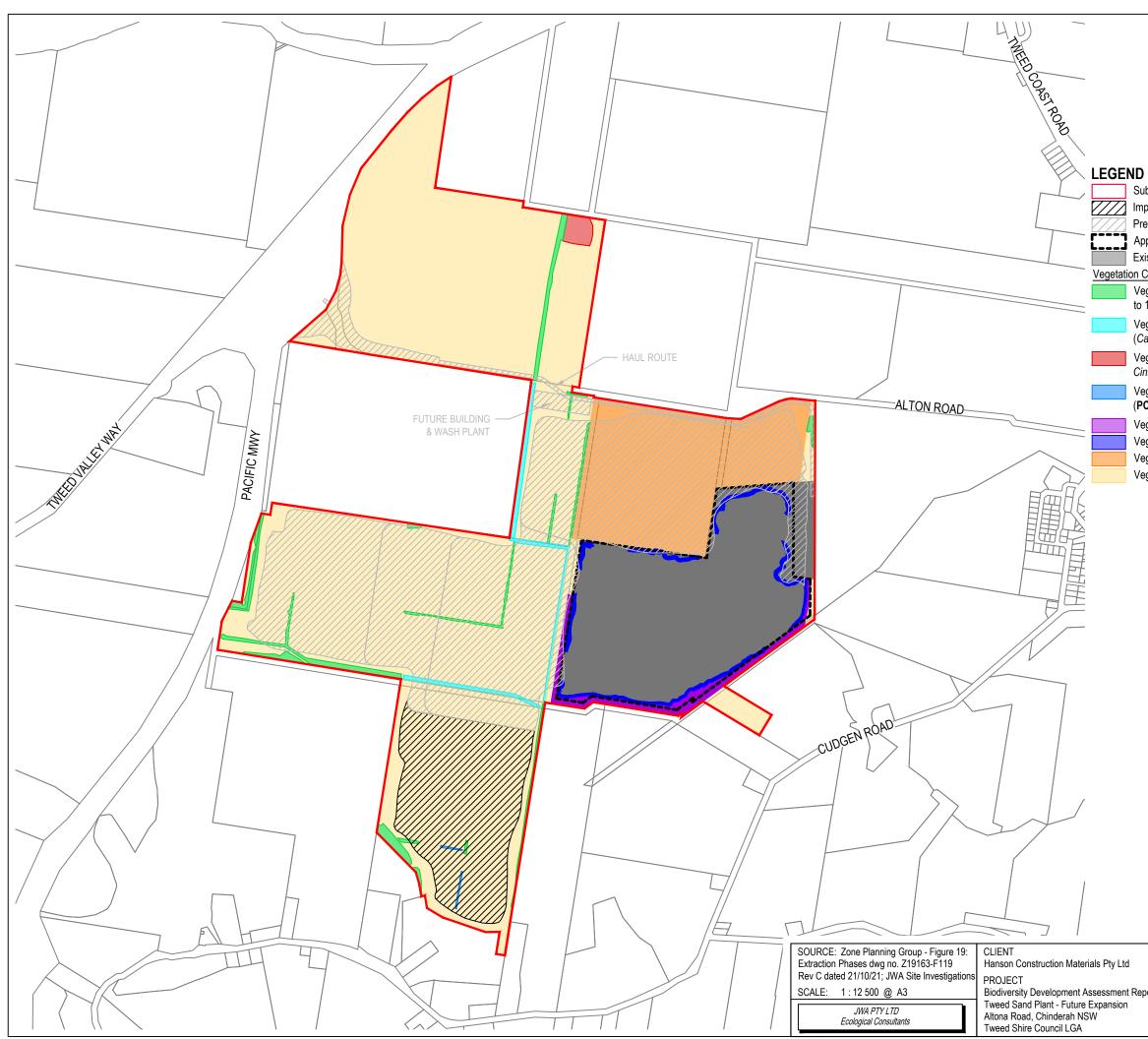

The proposed impacts of the development will occur over a thirty (30) year period. Prior to the commencement of sand extraction works within each future phase, a phase specific BDAR (or assessment in line with the relevant legislation at that time) will be prepared to accurately assess impacts and offset obligations.

Direct impacts on vegetation communities as a result of the proposed development on a phase-by-phase basis are detailed in TABLE 7 and shown in FIGURES 9 - 15. The direct impacts on these PCTs will reduce the vegetation integrity score over these areas of the site to 0.

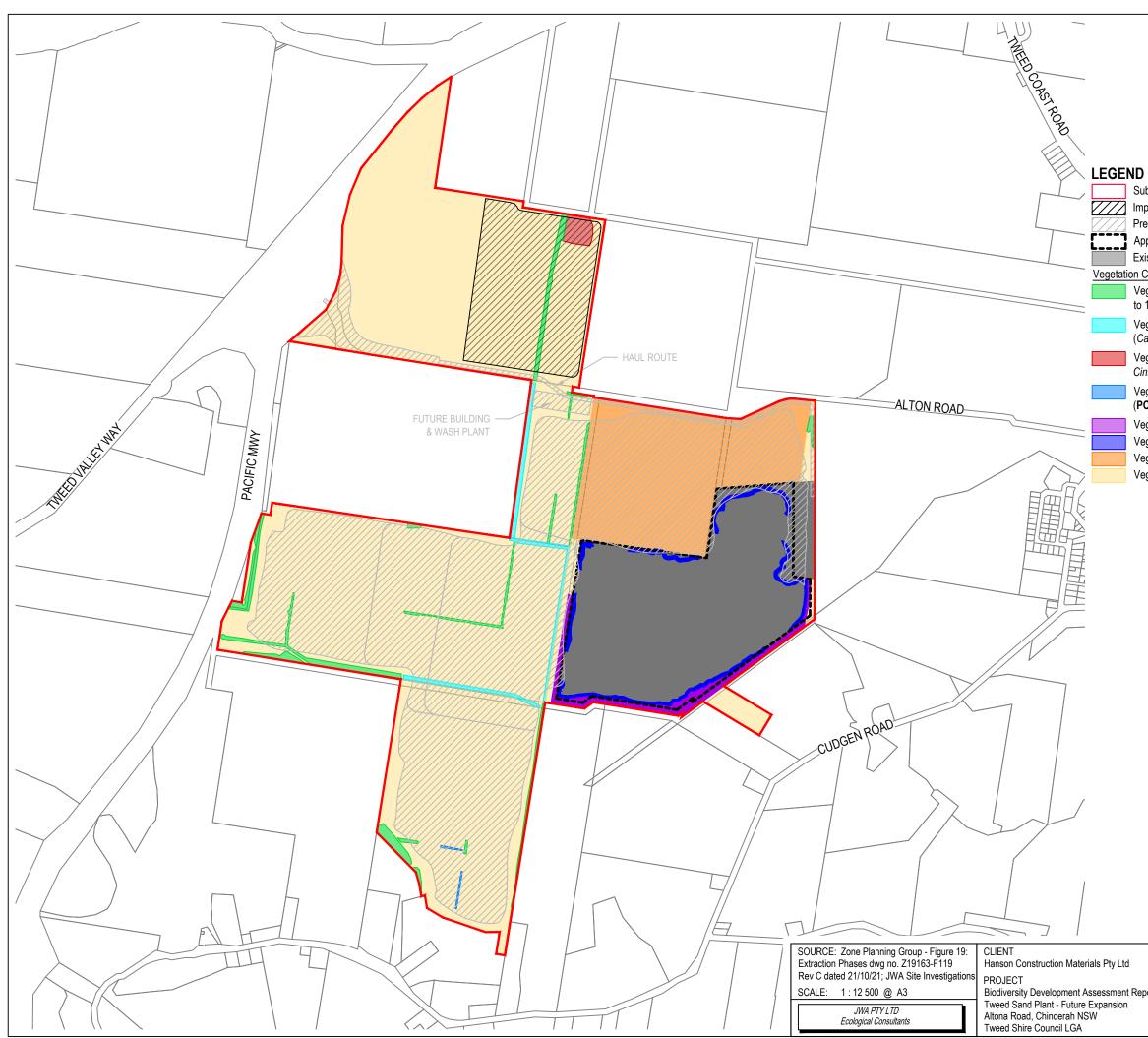

A species polygon has been identified on the subject site for one (1) species credit species assumed to be present on site - Southern Myotis (*Myotis macropus*) - and includes all areas within 200 m of rivers, creeks, billabongs, lagoons, dams and other waterbodies (**FIGURE 16**). Direct impacts on species polygons as a result of the proposed development on a phase-by-phase basis are detailed in **TABLE 8**.


bject Site bact Area proved Extraction Area sting Works Area & Processing Plant <u>Communities</u> getation Zone 1: Mid-high swamp sclerophyll forest (<i>Casuarina glauca</i>) 18m (PCT 1235) getation Zone 2: Mid-high regenerating swamp sclerophyll forest <i>asuarina glauca</i>) +/- Mangroves (<i>Avicennia marina</i>) to 5-10m (PCT 1235) getation Zone 3: Tall swamp sclerophyll forest (<i>Melaleuca quinquenervia, unamomum camphora</i>) to 22m (PCT 1064) getation Zone 4: Tall rushland/reedland (<i>Typha orientalis</i>) to 2m CT 780, derived) getation Zone 5: Approved Riparian Rehabilitation Area (PCT 1235) getation Zone 6: Approved Wetland Rehabilitation Area (PCT 1290) getation Zone 7: Tea tree plantation (not assessed)				
getation Zone 8: Pasture grasses (not as	sessed)			
Scale 1:12 500 - Lengths in m Luutuul I I I 100 0 100 200 300	netres 400 500			
PREPARED: BW DATE: 21 October 2021 FILE: N09007_BDAR_20211021.dwg	TITLE IMPACTS ON VEGETATION COMMUNITIES - PHASE 5 (YRS 1-3)			

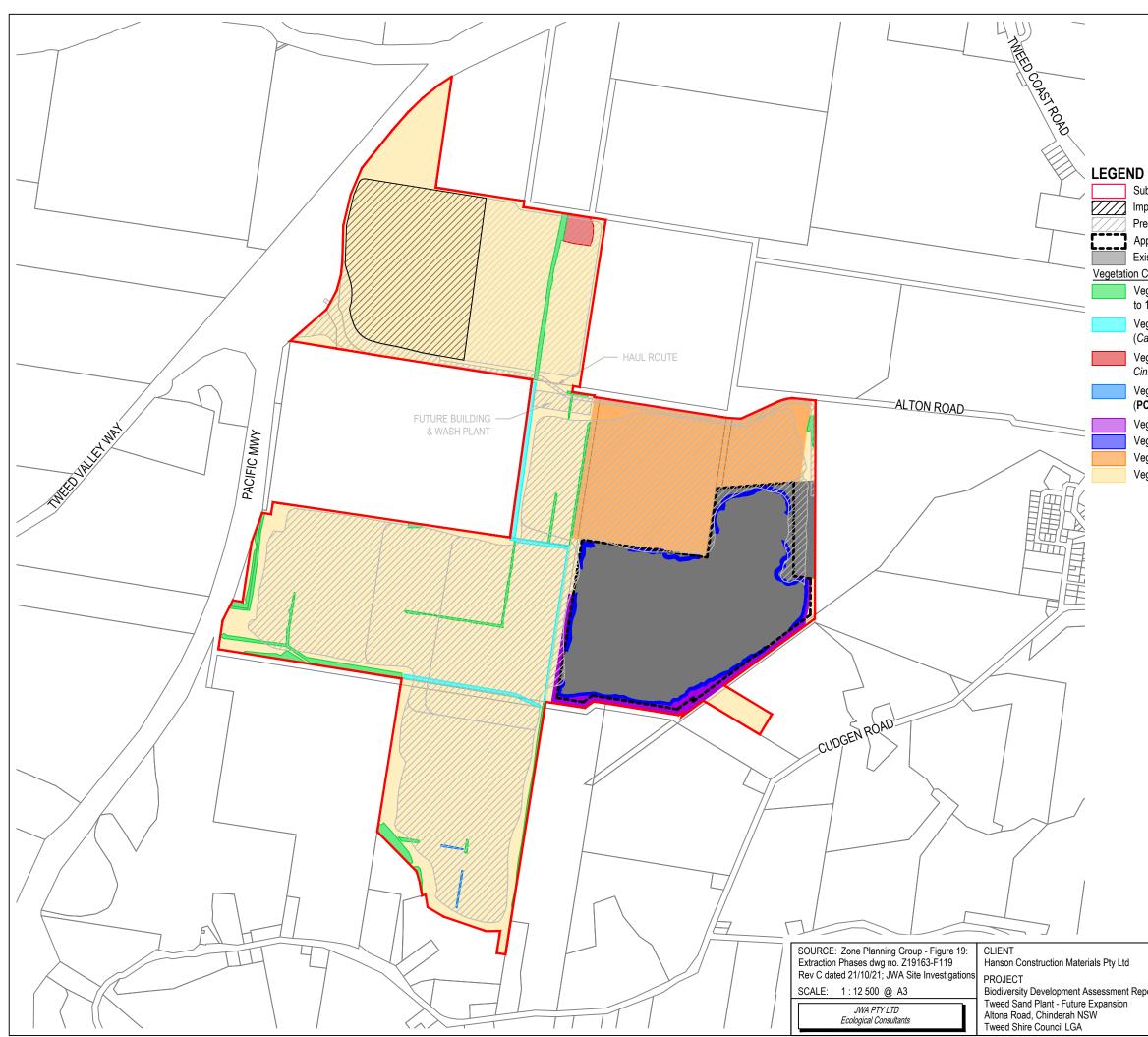
		Ň	
pact eviou pprov istin <u>Com</u> egeta 18m egeta asua egeta asua	t Site Area us Phases Impact Area ved Extraction Area g Works Area & Processing Plant <u>munities</u> ation Zone 1: Mid-high swamp sclerop (PCT 1235) ation Zone 2: Mid-high regenerating sy <i>arina glauca</i>) +/- Mangroves (<i>Avicenni</i> ation Zone 3: Tall swamp sclerophyll fi <i>nomum camphora</i>) to 22m (PCT 1064)	wamp sclerophyll forest a marina) to 5-10m (PCT 1235) prest (<i>Melaleuca quinquenervia</i> , I)	
egetation Zone 4: Tall rushland/reedland (<i>Typha orientalis</i>) to 2m CT 780, derived) egetation Zone 5: Approved Riparian Rehabilitation Area (PCT 1235) egetation Zone 6: Approved Wetland Rehabilitation Area (PCT 1290) egetation Zone 7: Tea tree plantation (not assessed) egetation Zone 8: Pasture grasses (not assessed)			
	Scale 1:12 500 - Lengths in m Luutuul I I I 100 0 100 200 300	etres 400 500	
port	FIGURE 10 PREPARED: BW DATE: 21 October 2021 FILE: N09007_BDAR_20211021.dwg	TITLE IMPACTS ON VEGETATION COMMUNITIES - PHASE 6 (YRS 4-8)	



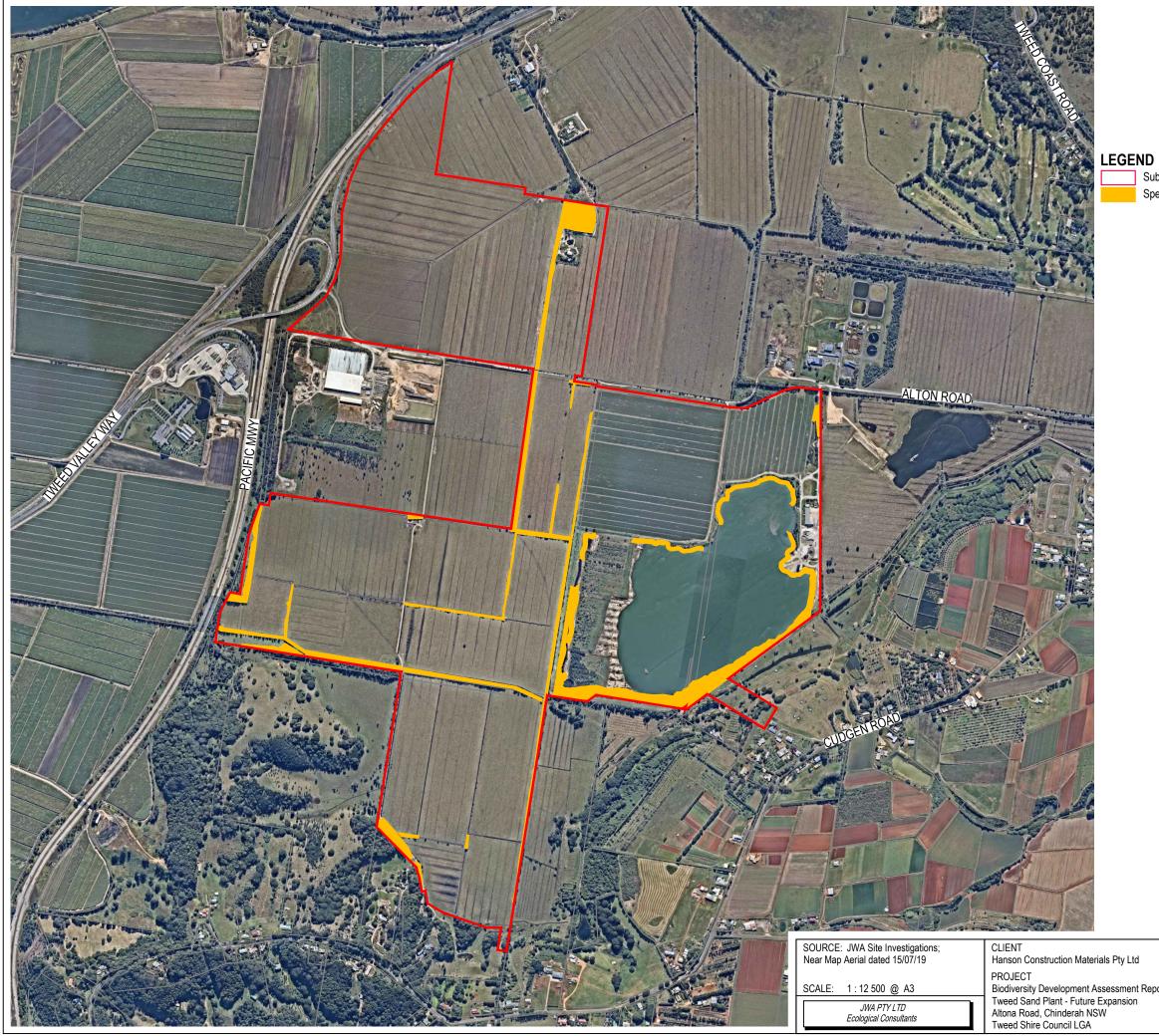
	N
bject Site pact Area evious Phases Impact Area proved Extraction Area isting Works Area & Processing Plant <u>Communities</u> getation Zone 1: Mid-high swamp sclerop 18m (PCT 1235) getation Zone 2: Mid-high regenerating st <i>asuarina glauca</i>) +/- Mangroves (<i>Avicenni</i>	wamp sclerophyll forest
getation Zone 3: Tall swamp sclerophyll f anamomum camphora) to 22m (PCT 106 4 getation Zone 4: Tall rushland/reedland (CT 780, derived) getation Zone 5: Approved Riparian Reha getation Zone 6: Approved Wetland Reha	orest (<i>Melaleuca quinquenervia</i> , 4) <i>Typha orientalis</i>) to 2m abilitation Area (PCT 1235)
getation Zone 7: Tea tree plantation (not getation Zone 8: Pasture grasses (not as	assessed)
Scale 1:12 500 - Lengths in m Lunturi I I 100 0 100 200 300	etres 400 500
FIGURE 11 PREPARED: BW DATE: 21 October 2021 FILE: N09007_BDAR_20211021.dwg	TITLE IMPACTS ON VEGETATION COMMUNITIES - PHASE 7 (YRS 9-13)


	NI T
bject Site	
pact Area	
evious Phases Impact Area	
proved Extraction Area	
isting Works Area & Processing Plant Communities	
getation Zone 1: Mid-high swamp sclerop 18m (PCT 1235)	hyll forest (Casuarina glauca)
getation Zone 2: Mid-high regenerating s asuarina glauca) +/- Mangroves (Avicenn	
egetation Zone 3: Tall swamp sclerophyll f nnamomum camphora) to 22m (PCT 1064	4)
egetation Zone 4: Tall rushland/reedland (CT 780, derived)	
getation Zone 5: Approved Riparian Reha getation Zone 6: Approved Wetland Reha getation Zone 7: Tea tree plantation (not getation Zone 8: Pasture grasses (not as	abilitation Area (PCT 1290) assessed)
Scale 1:12 500 - Lengths in m	etres
<u>luuluul I I I</u> 100 0 100 200 300] 400 500
FIGURE 12	IMPACTS ON VEGETATION
port	COMMUNITIES
PREPARED: BW DATE: 21 October 2021 FILE: N09007_BDAR_20211021.dwg	- PHASE 8 (YRS 14-18)

I



	NI T
bject Site pact Area	
evious Phases Impact Area	
proved Extraction Area isting Works Area & Processing Plant	
Communities	
getation Zone 1: Mid-high swamp sclerop 18m (PCT 1235)	hyll forest (Casuarina glauca)
getation Zone 2: Mid-high regenerating s asuarina glauca) +/- Mangroves (Avicenn	ia marina) to 5-10m (PCT 1235)
getation Zone 3: Tall swamp sclerophyll f nnamomum camphora) to 22m (PCT 1064	4)
getation Zone 4: Tall rushland/reedland(CT 780, derived)	<i>Typna orientalis)</i> to 2m
getation Zone 5: Approved Riparian Reha getation Zone 6: Approved Wetland Reha getation Zone 7: Tea tree plantation (not getation Zone 8: Pasture grasses (not as	abilitation Area (PCT 1290) assessed)
Coole 1.12 500 Longths in m	
Scale 1:12 500 - Lengths in m	
luuluul 100 0 100 200 300	400 500
FIGURE 13	
port	VEGETATION COMMUNITIES
PREPARED: BW DATE: 21 October 2021 FILE: N09007_BDAR_20211021.dwg	- PHASE 9 (YRS 19-22)


I

		NU T
bject Site pact Area evious Phases Impact Area oproved Extraction Area isting Works Area & Proces	sing Plant	
<u>Communities</u> getation Zone 1: Mid-high s 18m (PCT 1235)	wamp sclerop	hyll forest (Casuarina glauca)
- , -	oves (<i>Avicenni</i> p sclerophyll fo	a marina) to 5-10m (PCT 1235) orest (<i>Melaleuca quinquenervia</i> ,
getation Zone 4: Tall rushla CT 780, derived)		
egetation Zone 5: Approved egetation Zone 6: Approved egetation Zone 7: Tea tree p egetation Zone 8: Pasture gr	Wetland Reha	bilitation Area (PCT 1290) assessed)
Scale 1:12 500 ایسلیسا ا 100 0 100	0 - Lengths in m <u>I I</u> 200 300	
FIGURE	14	IMPACTS ON VEGETATION
PREPARED: BW DATE: 21 October 20 FILE: N09007_BDAR_2		COMMUNITIES - PHASE 10 (YRS 23-26)

	N T
bject Site pact Area evious Phases Impact Area proved Extraction Area isting Works Area & Processing Plant <u>Communities</u> egetation Zone 1: Mid-high swamp sclerophy 18m (PCT 1235) egetation Zone 2: Mid-high regenerating swa <i>asuarina glauca</i>) +/- Mangroves (<i>Avicennia i</i> egetation Zone 3: Tall swamp sclerophyll fore <i>nnamomum camphora</i>) to 22m (PCT 1064)	mp sclerophyll forest marina) to 5-10m (PCT 1235) est (<i>Melaleuca quinquenervia</i> ,
egetation Zone 4: Tall rushland/reedland (<i>Ty</i>) CT 780, derived) egetation Zone 5: Approved Riparian Rehabi egetation Zone 6: Approved Wetland Rehabil egetation Zone 7: Tea tree plantation (not as egetation Zone 8: Pasture grasses (not asses	litation Area (PCT 1235) litation Area (PCT 1290) sessed)
Scale 1:12 500 - Lengths in metr Luutuul I I I 100 0 100 200 300 4	es IJ 00 500
DOPT FIGURE 15	IMPACTS ON VEGETATION COMMUNITIES PHASE 11 (YRS 27-30)

	Scale 1:12 500 - Lengths in m Luutuul I I I 100 0 100 200 300	etres 400 500
port	FIGURE 16	TITLE SPECIES POLYGON FOR
	DATE: 05 October 2021 FILE: N09007_BDAR_20211005.dwg	SOUTHERN MYOTIS

Subject Site Species Polygon for Southern Myotis (*Myotis macropus*)

r

	Area to be Removed								
Vegetation Community	Phase 5	Phase 6	Phase 7	Phase 8	Phase 9	Phase 10	Phase 11	TOTAL	
<u>Vegetation Zone 1</u> : Mid-high swamp sclerophyll forest (<i>Casuarina</i> glauca) to 18m (PCT 1235)	0.45 ha	0.33 ha	0.11 ha	0.21 ha	0.06 ha	0.69 ha	0.00 ha	1.85 ha	
<u>Vegetation Zone 2</u> : Mid-high regenerating swamp sclerophyll forest (<i>Casuarina glauca</i>) +/- Mangroves (<i>Avicennia marina</i>) to 5- 10m (PCT 1235)	0.00 ha	1.02 ha	0.08 ha	0.00 ha	0.00 ha	0.00 ha	0.00 ha	1.10 ha	
<u>Vegetation Zone 3</u> : Tall swamp sclerophyll forest (<i>Melaleuca</i> <i>quinquenervia, Cinnamomum</i> <i>camphora</i>) to 22m (PCT 1064)	0.00 ha	0.00 ha	0.00 ha	0.00 ha	0.00 ha	0.78 ha	0.00 ha	0.78 ha	
<u>Vegetation Zone 4</u> : Tall rushland/reedland (<i>Typha</i> <i>orientalis</i>) to 2m (PCT 780)	0.00 ha	0.00 ha	0.00 ha	0.00 ha	0.09 ha	0.00 ha	0.00 ha	0.09 ha	
Vegetation Zone 5: Riparian rehabilitation areas (PCT 1235)	0.00 ha	0.47 ha	0.00 ha	0.00 ha	0.09 ha	0.00 ha	0.00 ha	0.47 ha	
Vegetation Zone 6: Wetland rehabilitation areas (PCT 1808)	0.88 ha	0.71 ha	0.00 ha	0.00 ha	0.00 ha	0.00 ha	0.00 ha	1.59 ha	
TOTAL	1.32 ha	2.53 ha	0.19 ha	0.21 ha	0.15 ha	1.47 ha	0.00 ha	5.88 ha	

 TABLE 7

 DIRECT IMPACTS ON VEGETATION COMMUNITIES

TABLE 8 DIRECT IMPACTS ON SPECIES POLYGONS

Vegetation Community	Area to be Removed								
	Phase 5	Phase 6	Phase 7	Phase 8	Phase 9	Phase 10	Phase 11	TOTAL	
Southern Myotis (<i>Myotis macropus</i>)	1.32 ha	2.53 ha	0.19 ha	0.21 ha	0.15 ha	1.47 ha	0.00 ha	5.88 ha	

5.3 Potential Indirect Impacts

The proposed impacts of the development will occur over a thirty (30) year period. Prior to the commencement of sand extraction works within each future phase, a phase specific BDAR (or assessment in line with the relevant legislation at that time) will be prepared to accurately assess impacts and offset obligations. The proposed development of the subject site may contribute to the following potential indirect impacts:

- Alteration to drainage and hydrological regimes in the study area and adjacent areas;
- Decline in water quality entering adjacent waterway areas (e.g. sediment load, pH, influx of pollutants, nutrient loading);
- Potential impacts on groundwater. Given the nature of the site soils and groundwater characteristics observed to date, the most likely potential impacts on groundwater as a result of the development are (G&S 2021a):
 - Localised and minor changes to pre-development groundwater flow regimes in the vicinity of the lake that will be largely contained within the development footprint; and
 - Changes to groundwater elevation as a result of the proposed expansion. These are predominantly contained within the development footprint, occurring within the northern and southern sections of the extraction footprint;
- Increased opportunity for weeds to become established. Invasive landscape species may escape to adjacent areas of native vegetation;
- Increased light, noise and activity may cause reclusive species to move away from habitat edges;
- Increased risk of rubbish dumping, creation of walking tracks and associated impacts within adjacent native vegetation communities.

5.4 Prescribed Biodiversity Impacts

5.4.1 Background

In accordance with Clause 6.1 of the BCR:

- The impacts on biodiversity values of the following actions are prescribed (subject to subclause (2)) as biodiversity impacts to be assessed under the biodiversity offsets scheme:
 - a. the impacts of development on the following habitat of threatened species or ecological communities:
 - i. karst, caves, crevices, cliffs and other geological features of significance,
 - ii. rocks,

- iii. human made structures,
- iv. non-native vegetation,
- b. the impacts of development on the connectivity of different areas of habitat of threatened species that facilitates the movement of those species across their range,
- c. the impacts of development on movement of threatened species that maintains their lifecycle,
- d. the impacts of development on water quality, water bodies and hydrological processes that sustain threatened species and threatened ecological communities (including from subsidence or upsidence resulting from underground mining or other development),
- e. the impacts of wind turbine strikes on protected animals,
- f. the impacts of vehicle strikes on threatened species of animals or on animals that are part of a threatened ecological community.
- 2) The additional biodiversity impacts prescribed by this clause:
 - a. are prescribed for the purposes of assessment and biodiversity assessment reports under the Act, but are not additional biodiversity impacts for the purposes of calculating the number and class of biodiversity credits that are required under a biodiversity assessment report to be retired to offset the residual impact on biodiversity values of proposed development, proposed clearing of native vegetation or proposed biodiversity certification of land, and
 - b. may be taken into account in the determination of the biodiversity credits required to be retired (or other conservation measures required to be taken) under a planning approval or vegetation clearing approval or under a biodiversity certification of land.

5.4.2 Applicability to the Assessment Area

5.4.2.1 Habitat of Threatened Species or Ecological Communities

The assessment area does not contain any of the prescribed habitat features.

5.4.2.2 Connectivity

The proposed development will occur on an area already affected by past clearing and cattle grazing activities. The development is therefore not considered to result in any additional impacts on connectivity between habitat areas.

5.4.2.3 Movement of Threatened Species that Maintains their Lifecycle

As discussed above, the proposed development will occur on an area already currently already affected by past clearing and cattle grazing activities. The development is therefore not considered to result in any additional impacts on the movements of threatened species that maintains their lifecycles.

5.4.2.4 <u>Water Quality, Water Bodies and Hydrological Processes that Sustain Threatened</u> <u>Species and Threatened Ecological Communities</u>

Gilbert & Sutherland Pty Ltd (G&S) have prepared a Soil and Water Management Plan (SWMP) for the proposed expansion. The SWMP was prepared to satisfy relevant matters included in the Secretary's Environmental Assessment Requirements (SEAR) issued for the Project in December 2019, and establishes procedures and responsibilities for the management of soil and water related aspects of the proposed TSP expansion including:

- acid sulfate soil management;
- erosion and sediment control;
- surface water and groundwater monitoring programs;
- cyanobacteria (blue green algae) management;
- waste management; and
- contaminated lands

Although there are likely to be some minor alterations to the existing hydrology of the subject site, with the implementation of the measures detailed in the SWMP (G&S 2021) it is considered unlikely that the proposal would impact on water quality, water bodies and/or hydrological processes that sustain threatened species and threatened ecological communities.

Groundwater level changes resulting from the development are not predicted to cause impacts within proximity to any of the known registered bores. A drawdown of up to 0.5 m is predicted to occur within a small portion of the Low Potential Groundwater Dependant Ecosystem (GDE), which is mapped on the southern boundary of the expansion footprint west of Lot 1 on DP1250570. This GDE occurs in a highly modified state having regrown on a historically cleared floodplain and in associated with constructed drains. This GDE is therefore considered unlikely to be significantly impacted by groundwater drawdown of this magnitude.

5.4.2.5 Impacts of Wind Turbine Strikes

Not applicable to the proposed development.

5.4.2.6 Impacts of Vehicle Strikes

Future development and occupation of the subject site is considered unlikely to contribute to an increase in the risk of vehicle strikes.

5.5 Potential Serious and Irreversible Impacts

5.5.1 Background

Serious and irreversible impacts are those impacts that:

- will cause a further decline of a species or ecological community that is currently observed, estimated, inferred or reasonably suspected to be in a rapid rate of decline; or
- will further reduce the population of a species or ecological community that is currently observed, estimated, inferred, or reasonably suspected to have a very small population size; or
- are impacts on the habitat of a species or area of ecological community that is currently observed, estimated, inferred or reasonably suspected to have a very limited geographic distribution; or
- are impacts on a species or ecological community is unlikely to respond to measures to improve habitat and vegetation integrity and is therefore irreplaceable.

It is the role of the decision-maker to determine whether or not any of the residual impacts of a proposed development, activity, biodiversity certification or vegetation clearing on biodiversity values (that is, the impacts that would remain after any proposed avoid or mitigate measures have been taken) are serious and irreversible

To assist a decision-maker with this task, the BC Act (and the BCR) provides a framework to make this determination. The framework consists of a series of principles defined in the BC Regulation and supporting guidance, provided for under section 6.5 of the BC Act, to interpret these principles.

5.5.2 Applicability to the Assessment Area

No habitat for any SAII entities, as listed within Appendix 2: List of potential species (and their habitat) that meet the SAII principles and criteria within Guidance to assist a decision-maker to determine a serious and irreversible impact (the guide), is considered to be present on the subject site.

5.6 Impacts Requiring an Offset

5.6.1 Ecosystem Credits

Impacts on the following ecosystems will require offsets:

- PCT 1235 Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion;
- PCT 1064 Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion; and
- PCT 1808 Estuarine reedland.

Offsets have been apportioned on a phase-by-phase basis. Refer to the BAM Biodiversity Credit Report (APPENDIX 5) for further details.

5.6.2 Threatened Species

Impacts on the following threatened species will require offsets:

• Southern Myotis (Myotis macropus).

Offsets have been apportioned on a phase-by-phase basis. Refer to the BAM Biodiversity Credit Report (**APPENDIX 5**) for further details.

6 AVOIDANCE & MINIMISATION OF IMPACTS

6.1 Introduction

This section of the BDAR discusses methods to avoid and minimise impact of the proposed development including:

- details of efforts to avoid and minimise impact on biodiversity values (in accordance with Section 7 of the BAM); and
- an assessment of direct and indirect impacts unable to be avoided at the development site (in accordance with Sections 8.1 and 8.2 of the BAM).

The assessment of impacts has considered the included the type, frequency, intensity, duration and consequence of impacts.

6.2 Avoidance and Minimisation Measures

6.2.1 Pre-Construction/Design Phase

6.2.1.1 Locating the Project

The project will generally be located in areas which have historically been cleared or otherwise disturbed by clearing impacts.

6.2.1.2 Project Design

The proposed development will be constructed in a manner sensitive to areas of retained habitat on adjoining land and designed in a manner that reduces associated indirect impacts. Prior to the commencement of sand extraction works within each phase, a phase specific BDAR (or assessment in line with the relevant legislation at that time) will be prepared to accurately assess impacts, avoidance and mitigation measures, and offset obligations.

6.2.2 Construction Phase

6.2.2.1 Education of Site Personnel

A construction personnel induction program shall be developed by the Proponent to highlight the presence of significant vegetation and habitat values adjacent to the site. The general induction of all construction personnel will cover such matters as:

- Areas adjacent to the site in which significant vegetation and habitat values occur;
- Threats to significant vegetation and habitat values associated with construction activities;
- Requirement to report any incidents within the significant vegetation and habitat areas, and actions required; and
- Requirements of any relevant Management Plans, particularly protocols for vegetation clearing and measures to protect all other native vegetation.

6.2.2.2 Vegetation Protection Measures

During construction activities, temporary high visibility fencing will be erected to assist in the protection of vegetation to be retained from all construction activities by restricting access from machinery and contractors. This fencing will be erected in accordance with Australian Standard 4970-2009 Protection of Trees and any additional requirements of a Vegetation Management Plan to be prepared by a suitably qualified ecologist. Temporary signage will be provided along all temporary fencing during the construction phase stating "Environmental Protection Zone - No Unauthorised Entry".

No machinery, rubbish or spoil will be stored within retained vegetation during the construction phase of the development. Vehicle/equipment wash-down areas or access tracks will not be located in or immediately adjacent to retained vegetation.

6.2.2.3 Fauna Protection Measures

Vegetation will be inspected for fauna by a suitably qualified ecologist immediately prior to the commencement of clearing/earthworks. Any fauna detected within proposed clearing areas will be relocated to suitable habitat outside of the subject site. Consideration will be given to appropriate release times and locations for specific fauna groups and a record kept of all species encountered/relocated.

6.2.2.4 Water Quality Protection Measures

In relation to surface water quality, the Surface Water Assessment (G&S 2021b) has determined that:

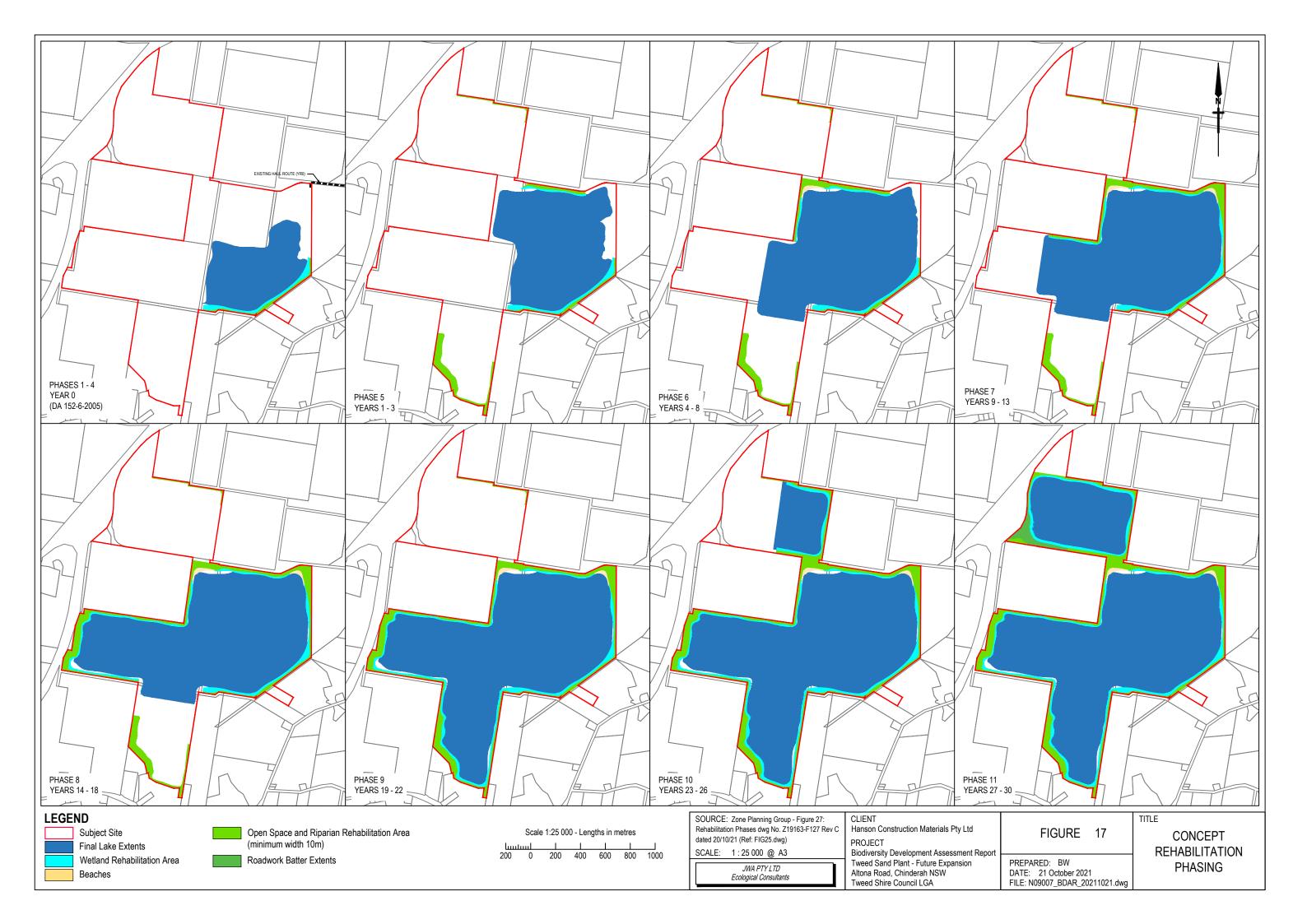
- The long-term median for pH of surface waters within the TSP Lake is 8.34. This value marginally exceeds the Tweed River Water Quality Objective of 8.0 but complies with the ANZECC 2000 criteria for primary contact recreation of 6.5 to 8.5.
- Dissolved oxygen concentrations within the TSP lake remain above the Tweed River, ANZECC and NHRMC Guideline minimums of 6.0 mg/L. As a constituent measure of waterbody health, DO at concentrations observed within the extraction lake are ideal for supporting normal aquatic ecosystem function.
- Metal-rich surface waters (Al, Fe) commonly result from the disturbance of acid sulfate soils, where the oxidation of pyrite in disturbed soils increases the solubility of these metals. Negligible concentrations of metals were detected within the surface waters of the TSP lake and within the agricultural drains throughout the expansion site. Long term median levels within the TSP lake remain compliant with the ANZECC performance criteria for aquatic ecosystem protection and primary contact recreation.
- Elevated nutrient levels have been recorded within the TSP lake although due to dilution from rainfall inflows, the levels are substantially lower than within the groundwater environment and are similar to those recorded within the nearby Tweed River.

With consideration of the above it is noted that the water quality recorded at the TSP site has remained largely stable over time. The soil and water management practices implemented at the site to date have proven successful in maintaining and in some instances improving water quality within the extraction lake. With continued implementation of existing soil and water management practices it is anticipated that existing water quality at the site will be maintained in the long-term.

It is noted that no dewatering is proposed in any of the extraction phases. In relation to groundwater quality, the Groundwater Assessment (G&S 2021a) notes that an ongoing program of groundwater quality compliance monitoring has been undertaken at the TSP site since 2001, resulting in a comprehensive data set for the site. Building on the existing water quality monitoring program, a further eight rounds of groundwater monitoring were conducted across the proposed expansion area between March and October 2020, to establish baseline conditions and determine similarities and differences between the expansion area and current TSP site.

Results obtained for shallow groundwater within the existing and proposed site area demonstrate long-term median values generally comply with the Tweed River Water Quality Objectives, ANZECC Water Quality Guidelines and NHRMC Recreation Water Quality Guidelines for primary contact recreation.

Results obtained for deep groundwater within the TSP site also demonstrate median values that generally comply with the Tweed River Water Quality Objectives, ANZECC Water Quality Guidelines and NHRMC Recreation Water Quality Guidelines for primary contact recreation.


Groundwater will be managed in accordance with the measures prescribed in the Soil and Water Management Plan (G&S 2021c). This management plan outlines monitoring regimes and mitigation measures for the management of impacts to surface and groundwaters.

6.2.3 Post-construction/Operational Phase

6.2.3.1 <u>Rehabilitation Works and Appropriate Landscaping</u>

Rehabilitation works on the site will be completed on a stage-by-stage basis following completion of sand extraction works within each phase. A Concept Rehabilitation and Landscape Management Plan (RLMP) has been prepared for the subject site (FIGURE 17). Rehabilitation works on the site will cover approx. 38.21 ha (over 16% of the site area, including landscaped road batters and beaches) and will be carried out progressively over eleven (11) phases within three (3) Rehabilitation Areas:

- Wetland rehabilitation areas primarily assisted natural regeneration of water plants/macrophytes around the fringes of the lake;
- Riparian rehabilitation areas providing a minimum 10m wide vegetated buffer around the perimeter of the subject site; and
- Open space areas (in the vicinity of beach areas) consisting of landscaped and grassed areas.

It should be noted that Phases 1 - 4 are to have been completed prior to the commencement of the proposed expansion, in accordance with an existing approved RLMP (JWA 2021). Therefore, the Concept RLMP provides details of Phases 5 - 11.

Prior to the commencement of rehabilitation works within each phase, a phase specific RLMP will be prepared to provide site specific guidance for the rehabilitation and management of the land to be restored. The phase specific RLMPs will be consistent with the strategies outlined in Concept RLMP and/or current best practice methods.

6.2.3.2 Monitoring and Reporting

Rehabilitation monitoring

Monitoring and reporting is critical in ensuring the continuing success of restoration works and will be carried out for the duration of project in accordance with the requirements of the Concept RLMP. To assess the success of rehabilitation works, vegetation assessments will be completed by a suitably qualified ecologist using plot-based vegetation surveys (transects and quadrats) and photo point monitoring. In addition, the rehabilitation team will also maintain records of works completed. The methodology to be used to monitor the rehabilitation works is outlined in the Concept RLMP.

Assessment of Biological Indicators

To assess the suitability of the extraction lakes and Rehabilitation Areas for terrestrial and aquatic fauna, assessments of biological indicators (fish, birds, and macroinvertebrates) will also be undertaken by suitably qualified persons using the methodology outlined in the Concept RLMP.

Monitoring of birds will be completed annually. Monitoring of fish and macroinvertebrates will be monitored at the end of each extraction phase.

Water quality monitoring

Water quality in the extraction lake will be monitored on a biannual basis in accordance with the Soil and Water Management Plan (G&S 2021c). Details of the water quality parameters to be tested and the water quality objectives to be met are outlined in the Soil and Water Management Plan (G&S 2021c).

Reporting

An Annual Rehabilitation Monitoring Report will be prepared which discusses the results of the monitoring of retained vegetation and rehabilitation areas against the Monitoring Performance Criteria identified in the Concept RLMP.

Each Annual Rehabilitation Monitoring Report will be included in the Annual Environmental Monitoring Report (AEMR) which is submitted to the Department of Planning, Industry and Environment (DPIE) as part of the current sand extraction licencing requirements.

7 BIODIVERSITY CREDIT REPORT

7.1 Introduction

Ecosystem credit and species credit obligations have been apportioned on a phase-by-phase basis. However, as previously discussed, due to the long-term nature of the proposed expansion, this BDAR has been prepared to provide overarching offsetting requirements associated with the proposed sand extraction works on a phase-by-phase basis. Prior to the commencement of sand extraction works within each phase, a phase specific BDAR (or assessment in line with the relevant legislation at that time) will be prepared to accurately assess impacts and offset obligations.

7.2 Ecosystem Credits

A total of 153 ecosystem credits have been calculated as applicable for the unavoidable loss of site vegetation as follows:

- **PCT 1235** Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion = **72 credits**
- **PCT 1064** Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion = **21 credits**
- PCT 1808 Estuarine reedland = 60 credits

Offsets have been apportioned on a phase-by-phase basis (**TABLE 9**). Refer to the BAM Biodiversity Credit Report (**APPENDIX 5**) for further details. These credits will need to be purchased or retired as an offset for the removal of site vegetation.

7.3 Species Credits

A total of 157 species credit for threatened species have been calculated as applicable for the unavoidable loss of site vegetation as follows:

• Southern Myotis (*Myotis macropus*) = **157 credits.**

Offsets have been apportioned on a phase-by-phase basis (**TABLE 10**). Refer to the BAM Biodiversity Credit Report (**APPENDIX 5**) for further details. These credits will need to be purchased or retired as an offset for the removal of site vegetation.

Ecosystem Credits	Credit Requirement								
	Phase 5	Phase 6	Phase 7	Phase 8	Phase 9	Phase 10	Phase 11	TOTAL	
PCT 1235 - Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion (Vegetation Zones 1, 2 & 5)	8	42	3	4	3	12	0	72	
(Vegetation Zones 1, Z d J)									
PCT 1064 - Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion (Vegetation Zone 3)	0	0	0	0	0	21	0	21	
PCT 1808 - Estuarine reedland (Vegetation Zone 6)	33	27	0	0	0	0	0	60	
TOTAL								153	

 TABLE 9

 ECOSYSTEM CREDIT OFFSET OBLIGATIONS (PHASE-BY-PHASE)

 TABLE 10

 SPECIES CREDIT OFFSET OBLIGATIONS (PHASE-BY-PHASE)

Vegetation Community	Area to be Removed									
	Phase 5	Phase 6	Phase 7	Phase 8	Phase 9	Phase 10	Phase 11	TOTAL		
Southern Myotis (<i>Myotis macropus</i>)	46	78	3	4	3	23	0	157		

APPENDIX 1 - ADAM MCARTHUR CV

ADAM MCARTHUR DIRECTOR / PRINCIPAL ECOLOGIST

Biography

Adam has over 19 years' experience as an ecological consultant/environmental scientist throughout NSW and Qld and is an accredited assessor to apply the Biodiversity Assessment Methodology (BAM) in accordance with the requirements of the NSW *Biodiversity Conservation Regulation 2017* (Certification No.: BAAS18069).

In addition to aptitude in a broad environmental management role, he possesses expertise in wildlife biology and is also proficient in flora and fauna assessments and vegetation mapping. He has prepared baseline ecological surveys, impact assessments, rehabilitation plans, offset assessments/offset area management plans, bushfire assessments, due diligence investigations and threatened species management plans. He has completed environmental monitoring programs and compliance audits for numerous urban development, resource extraction and linear infrastructure projects.

Adam has managed teams of scientists, coordinated numerous ecological field surveys and authored/reviewed/approved countless technical reports.

Adam is proficient in the assessment of local government planning schemes, State and Commonwealth legislation, including the preparation of referrals under the EPBC Act, responses to Information Requests, and also the preparation of court evidence.

Adam's work has contributed to several major projects including:

- Altitude Aspire prepared ecological assessment, vegetation and rehabilitation management plans including a *Macadamia tetraphylla* translocation plan and a Biodiversity Development Assessment Report (BDAR) as part of a Master Planned Residential Community at Tweed Heads, northern NSW.
- Altitude Central prepared an ecological assessment including detailed flora and fauna surveys, and a Biodiversity Development Assessment Report (BDAR) as part of a Master Planned Development at Tweed Heads, northern NSW.
- Kings Forest prepared ecological assessments, EPBC referrals, targeted flora and fauna surveys and various management plans for a 10,000 dwelling Master Planned Development near Kingscliff, northern NSW.
- Cobaki Estate prepared ecological assessments, EPBC referrals, targeted flora and fauna surveys, and various management plans for a 5,500 dwelling Master Planned Development near Tweed Heads, northern NSW.

ADAM MCARTHUR DIRECTOR / PRINCIPAL ECOLOGIST

- Coolum Ridges prepared ecological assessments and various management plans, and implemented a detailed monitoring program for threatened flora and fauna species for a 1,500 lot Master Planned Development on the Sunshine Coast, QLD.
- Peregian Springs prepared and implemented a detailed monitoring program for threatened flora and fauna species for a 1,500 lot Master Planned Development on the Sunshine Coast, QLD.
- Pacific View Estate Residential Development prepared ecological constraints assessments including targeted surveys for threatened flora and fauna species, and assisted in the identification, securing and preparation of management plans for potential vegetation offsets for a 340ha site on the Gold Coast, QLD.
- Flinders Grove prepared ecological constraints assessments including targeted surveys for threatened flora and fauna species over a 4,000ha site within the Greater Flagstone Structure Plan Area, QLD.

Expertise

- > Flora Survey, Vegetation Mapping and Conservation Assessment
- Ecological Assessment Reporting/Impact Assessment
- Licensing and Approvals (State and Federal)
- > Wildlife Ecology and Management
- > Threatened Species Survey and Management
- > Environmental Monitoring
- > Offset Management Strategies

Education

2002 Bachelor of Applied Science (Environmental Resource Management) Southern Cross University, Lismore NSW

Short Courses and Qualifications

- Biocondition Assessment training Determining equivalency in habitats (Queensland Herbarium)
- Regional Ecosystem training Identification and classification of regional ecosystems in QLD and vegetation condition assessment (Queensland Herbarium)
- > Advanced first aid certificate

ADAM MCARTHUR DIRECTOR / PRINCIPAL ECOLOGIST

- > 4x4 driving and recovery course
- > Blue card (Course in General Safety Induction Construction Industry)
- GIQ Coal Safety Induction Standard 11 (Surface)
- Venomous snake handling
- > Translocation of threatened plants
- Environmental Expert training course
- Chainsaw operations (Level 1)
- > Occupational Health and Safety in the workplace
- > Wildlife Rescue and Rehabilitation Basic Training

Relevant Professional Experience

July 2017 - Present	Director/Principal Ecologist JWA Pty Ltd
March 2015 - June 2017	Principal Ecologist/Qld Operations Manager JWA Pty Ltd
July 2014 - March 2015	Senior Environmental Scientist DFS Group
March 2014 - June 2014	Environmental Advisor (Contract) Northern Stevedoring Services
May 2012 - March 2014	Senior Environmental Scientist RPS Group
Sept 2007 - April 2012	Senior Environmental Scientist James Warren & Associates
July 2004 - August 2007	Environmental Scientist James Warren & Associates

Professional Memberships

Member of the Ecological Society of Australia (MESA)

CERTIFICATE OF ACCREDITATION AS A BIODIVERSITY ASSESSMENT METHOD ASSESSOR under the *Biodiversity Conservation Act 2016* (NSW)

BAM Assessor							
Adam Michael McArthu	Adam Michael McArthur						
Accreditation number	Accreditation date (Date of issue)	Expiry Date of					
BAAS18069	5 April 2018	4 April 2022					

The person named above is accredited under section 6.10 of the *Biodiversity Conservation Act 2016* (NSW) (**BC Act**) as a Biodiversity Assessment Method Assessor to apply the Biodiversity Assessment Method in connection with the preparation of biodiversity stewardship site assessment reports, biodiversity development assessment reports and biodiversity certification assessment reports pursuant to Part 6 of the BC Act.

The accreditation is in force until and including the Expiry Date. The accreditation is subject to the conditions set out in the *Accreditation Scheme for the Application of the Biodiversity Assessment Method*, under the BC Act, and the conditions specified on the reverse of this certificate.

DEREK RUTHERFORD

Director Conservation Programs Branch Department of Planning, Industry & Environment

NOTES

- DPIE maintains a register of Accredited Biodiversity Assessment Method (BAM) Assessors accessible from the DPIE website.
- The BAM Assessor's accreditation expires on the Expiry Date unless renewed in accordance with the *Accreditation Scheme for the Application of the Biodiversity Assessment Method*. It is the BAM Assessor's responsibility to monitor the Expiry Date of their accreditation, and apply for any renewal with sufficient time for the application to be processed prior to the Expiry Date.
- Words and expressions used in this accreditation instrument and which are also used in the Act have the same meaning.

Adam Michael McArthur

having fulfilled the conditions prescribed by

the University is this day admitted to the degree of

Bachelor of Applied Science

Given under the Common Seal of Southern Cross University on the

11th April, 2003

Chancellor

In Afideard.

Vice-Chancellor

nmashall.

Council Secretary

APPENDIX 2 - BAM DATA SHEETS

BAM Si	ite – F	ield S	urve	ey Fo	orm		10	undernale tak		wineld ye	10	Site She	et r		t spillig in
					Su	rvey N	lame	Zon	e ID			Reco	rder	s	
	Date	27	8	24	A REAL PROPERTY AND A REAL			Plan	A	N	3	-		n militata II	lin î l
S 2000			atum				Plot ID			Plot dimensio	ins	100 X 1	0	Photo #	
Easting		5 <u>8</u> 7	rthing 26	īΥ	1	BRA	region	, . U	M.,., .	Midline bearing from 0 m		9	0	0	Magantië
/egetation	n Class		an an	-9											Confidence:
Plant Com	nmunity	Туре			5	NA	-0 -	ak/	vet	and	~	EE	C:		H M L Confidence:
Record east	ing and no	orthing at 0	m on n	nidline. (and the owner where the party of the party o	and the second second	Statement of Statements	04 ha base pl		vaina	30	chan	in		HML
	Attribut		1	n valu	÷1	Г	•			M Attribute		and the second data and the se	-		
(400) m ² plot	:)	Sui	n vaiu	25		DBH			Stems Cour			Ster	ns with H	ollows
	Trees			3		1 h							-		
	Shrub	s		0			80 + cm								
Count of	Grass	es etc.		7			50 - 79	cm						\bigcirc	
Native Richness	Forbs			Î			30 - 49	cm				12.7			
	Ferns	4		1				ad a		/					
	Other			0			20 – 29	cm		\checkmark					
	Trees	143	17	21.7	2		10 - 19	cm		lance a					
Sum of	Shrub)\$		0			5 – 9 c	m					j.		
Cover of native	Grass	es etc.	-	28	Π.		< 5 ci	70		1		No.(40) 9		p/p	
vascular plants by	Forbs		1	1.2		- +			- L	/			145	n/a	
growth form group	Ferns		0	1			(≥10 cm (0				in the second	
	Other			~	+-	L.	>50 om ir	- /		<u> </u>					
ligh Threa	t Weed	cover	0	.7	T.		when > 1 stem is in	0 (eg. 10, 20, icluded in the i	30, 100, 2 count/estime	tree stems with 00, 300). For ite. Tree stems de of a stem co	a mu mus	ilti-stemmed t be living,	tree	only the lar	gest living
							the larges	st stem is inclu	ided in the s	ount/estimate. t	Stems	s may be dea	d and	l may be s	hed tree, or hrubs.
BAM Attrib	ute (1 x	1 m plots	5)	Lit	ter co	ver (%)	Bare groun	d cover (%	6) Crypto	ogam	cover (%)	T	Rock co	over (%)
Subpl	ot score	(% in ea	ich)			- 4	1.1	n h 7		a a b	1	. d		to i	
ter cover is a	assessed a	he 5 subp as the aver	ade per	centace) d cover	of litter re	corded from fi	Velmvlr	n plots centred	at5 1	15 05 35 AR		I - I	midling Litt
ver includes	leaves, se	eds, twigs	, branch	nlets and	d branci	hes (les	s than 10	om in diamet	er) Assesso	rs may also rec	ord th	ie cover of roc	ik, ba	re ground a	ind cryptoga
Ph	ysiogr	aphy +	site	featu	res t	hat n	nay he	elp in dete	ermining	PCT and	i Ma	anageme	nt Z	one (or	otional)
Marphologi Type	cal			Landfo	TTT				iform			Microrelief			
Lithology				Soil Si Textur	uface			Soil Colo				Soil			
Slope				Aspec	1				Drainage			Depth Distance to Water and		rest	
Plot Dist	urbone		Severity		ge	Observ	etional ev	(idence)			-	1 manual dirigi	CALCO.		
Clearing (code	co	de		2.01101 01	Land Section And Section 201		_	_			-	
Cultivation	44.45	~ .												-	
	-												_		
Soil erosid	2. 17 pm	-		-	-										
Contraction of the second second	CWD re	moval													
Firewood					1					in the second second					
Firewood Grazing (id	ientify nativ	e/stock)	-		İ.										
Firewood Grazing (d Fire dama	ientify nativi Ige	e/stock)						f ndoor ift	area af		t et	i nonañai	1110	Responses Transieres	200 (1908) 1 0
Firewood Grazing (id	ientify nativi ige nage	e/stock)						Er nedar Part	initia di constanta br>Constanta di constanta di constant Constanta di constanta di constant	1 X011 201 - 100			1110 11	1 (para) 1 (),5,0	2-11 - 14-12 d - 14 d - 14

ther Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), Q=old (>10yrs)

	and the second division of the second divisio	eet _ of _	and the local division in which the local division in which the local division is not the local division in the	Survey Name	Plot Identifie	er	000	R	ecorders	17 - 53	15 10134
Date	27	8 20	T	weed Sand	2000	utbally	SON IN	MJ	-		
GF	Tan D					T		r	1	9750	-
Code	All othe	r native and e	in eacț xotic sp	growth form group: F becies: Full species na	ull species name mar me where practicable	datory	N, E or HTE	Cover	Abund	stratum	voucher
T	4		R	oak	and the all that the best build			15			
T	- (31-1	Dap	er bark		no una f	1000	6			
G	6	Eleoc	/		celata.			67		8 I P.	
1		Vyma	-				E	5		e tritta	old alton
G		Coucl	,,,	en curre	ve		E	30			
~1	C	· · ·	1				1	20	20.02	winum	1190 Ju
_	1.0	Carpo		grass.		-	E		100		
-		Fire.	rec	a		3	HTE	0.2	20	ALLOCAL	AN TESS
	-8	Coast	=1	morning	alom	+	ITE	0.5	10	(tely ho)	102
· · · · · · · · · · · ·	- D	colon	60	no war.	weed		E	0.1	20	RUNCT.	
ern	1911	A770	Ib	pinnat	9	(113) - 114		1	100	thirnibu	
G	111	Imper	Vi	polystac	himi	0.5 - 0.0		O.I	12		
Vib			di	A CONSTITUTO	, , , , , , , , , , , , , , , , , , , ,			0.1	20	0.8.04.187	
T		Anni	in	ing jer	a la la Im	14 - 17		0-2	1		- the second
~		ACAC	19	velar	oxylon.				2		
G		thrac	10 1	fes yust	ra is	477 - 171 -		0.1	0		
4	115	Trial	2/2	club ru	56.			0.1	10	1000	
9	111	Junc	25	usitations	mollis			0.5	30	Rent	
9	1 5	Typho	n .			a taot d		0-2	20	http://12	Ta rite
		seta	no	1			F	10			Trady()+
	1.0	clove	V			1.4	F	0.1	10.		Taktanan
and the second second			ALC: STOLEDY		um spál h	ridhann 1	-			1110	्य क्रमम
	11									NOTES N.	ettwee Princippi
-								1		Cabor	
	Land Land									POPERTY.	
in a start of								12.0	hivi	a nami	mba či, rj
	2.4=				·····			and an also see of the set			
	105										
	26					1		mi,J	(ittoin m	$T \times 1$ (59)	dinilA N
	1								topal interv	Lendos In	SOBAR
	26								Kangdhia il i	di tu quat	w.k
in the local data	20	the second s									and the second section
	-										
	11										
	34										
	52										
	34									Section 21	
	12										
	38										
-	11										
										1 A A A	

 GF Code:
 see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	orm	Mat Iden	wingit your	Site Sheet	no: 🕇 🕅	tołą śm.
		Survey Name	Zone ID		Recorde	rs	1 4 4
Date	27 8 20	Theed Sand	1 plant	N	June march	ti nimi Zu	va E A
Sec	Datum	Plot ID	2	Plot dimensions	100 × 10	Photo #	
Easting	Northing 6873183	IBRA region		Midline bearing from 0 m	85	50'	lugnolugi ³
Vegetation Clas	is out is o					Co	onfidence: M L
Plant Communi	ty Type	Sump	oak/	nargno	JE EEC:		onfidence:

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0 04 ha base plot

	Attribute m ² plot)	Sum values
	Trees	5
	Shrubs	0
Count of Native	Grasses etc.	
Richness	Forbs	1
	Ferns	0
	Other	2
	Trees	46.2
Sum of Cover	Shrubs	0
of native vascular	Grasses etc.	10
plants by growth form group	Forbs	1
	Ferns	0
	Other	1.2
High Threat	Weed cover	12.8

	BAM Attribute (1000 m	
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		0
30 – 49 cm		
20 – 29 cm		litera del com
10 – 19 cm		
5 – 9 cm	/ ,	and descent
< 5 cm		n/a
Length of logs (n (≥10 cm diameter, >50 cm in length)		

Counts apply when the number of tree stems within a size class is s 10. Estimates can be used when > 10 (eg. 10, 20, 30, 100, 200, 300,). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)
Subplot score (% in each)	8590 75 60 80	a k a d a	a b a d y	1 1 1 1 1 1 1
Average of the 5 subplots	78			

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchiets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogame.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological Type		Landform Element		Landform	Microrelief
Lithology		Soil Surface Texture		Soil Colour	Soll Depth
Slope		Aspect		Site Drainage	Distance to nearest water and type
lot Disturbance	Severity	Age code	Observational e	vidence:	
Clearing (inc. logging)					
Cultivation (inc. pasture)	-				
Soil erosion					
Firewood / CWD removal					
Grazing (identity native/stock)					
Fire damage	100		BARRING TO	A summer of available of	odes and Grawin From definitionally Amount
Storm damage		- ALLER T		uticity assuremented with the	

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Weediness Other

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

	plot: Sheet of	Survey Name	Plot Identifier	1113	Statement of the local division in which the local division in which the local division in the local divisione	ecorders	(1 9)	IS MP
Date	27 8 20	Tueed and	ame Sone D	I VIIIVIDIS	4			THEFT
GF Code	Top 3 native species in All other native and exo	each growth form group: Fi tic species: Full species nai	ill species name mandatory me where practicable	N, E or HTE	Cover	Abund	stratum	voucher
Ť	Swamp	call			30			and the second
Т	Grey	nanprove		4900	5			
	Landar	a l'indimini	and the second	HIE	8	1		12.00
	Firen	ud		HTE	0.2	20	1.600.0	petation
T	Tucke	100			10	anv.	vitoum	no U in
Section 2.	sotan	m seafor	higura	HTE	0-1	10		
-	paddy			E	0 .1	20		
1	Annon	1 raquee	d.	E	0.1	20	dela tre	bit hy
	Corky	passionfor	1.t	HITE	0.2		U.o.U	
1	(Dasta	morning	glon.	HITE	0.2	15	ederr(ii	
O	cocks	pr "	14 - 73 cm		1	10	essenti -	to unu
	Signa	grass	ومرافقة بالمترجب فلترافز والرواد المرجو	E	2			200
	Groun	d'asparage	15	MIE	5			- 1, C 1 - 1 - 1
Ci	Conn	on core	L . my 08 - 03		10		tillidet o	
1	seta	NG	A A I I I A A	E	0.5	20	19100	
	Siva	tro	्या थेर – पर	E	0.1	3	Depend	
T	Red	Lanala,	the disc d		0.2	33	ionni 2	(o. 176)
0	Scran	-bliv a li	lin		0-2	8	(Lease)	101/04
T	Guia			1	241	4		ունել
210	appropriates	m Tehrago	na tetragonoides	i	1	20		Hards
-	Rhod	es grass	idipad ni manita	HITE	0= /	5	- 100 M	Smooth a
		V			2-1		Other	
	77				2.51	1997	within the	nimett d
	7.4			Parent	er vitalita daletar			ramin lama_aite
	60			יין המעואר ("א	ar.	(add)q m	4. X 1) 111	and the second second
			4 1 2			Si In mot		
						ioliquite li r		VA Noteste
	- 29							
			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	1401-65				
	1.5							
	9.8							
	. 35						-	
_	10							
	1910							
	- 3.6							
	- 10 C					1 mm	an 1971	

 GF Code:
 see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF – circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, 100, 200, ..., 1000,

BAM Site -	Field Survey F	orm	mubi tati	ernold Yawa	Site Sheet	norebind doils for
		Survey Name	Zone ID		Recorde	rs
Date	27 8 20	Tueed Sind	Plant	MO	ng duich hi holmb	nd wylfad i'r og i'r d
Zone	Datum	Plot ID	3	Plot dimensions	100×10	Photo #
Easting 552724	Northing	IBRA region	L	Midline bearing from 0 m	349	- Magnoliu
Vegetation Clas	S					Confidence:
Plant Communi	ty Type	Nangro	ve/5~	mp sal	L EEC:	Confidence:

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot

	Attribute m ² plot)	Sum values
	Trees	2
	Shrubs	0
Count of Native	Grasses etc.	2
Richness	Forbs	
	Ferns	0
	Other	0
	Trees	30
Sum of Cover	Shrubs	0
of native vascular	Grasses etc.	6
plants by growth	Forbs	0.1
form group	Ferns	0
	Other	0
High Threat	Weed cover	0.1

1	BAM Attribute (1000 m	² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm	a total and the second	
50 – 79 cm		O
30 – 49 cm		
20 – 29 cm	\checkmark	
10 – 19 cm	\checkmark	
5 – 9 cm		
< 5 cm		n/a
Length of logs (n (≥10 cm diameter, >50 cm in length)		dinisiar ' ' — '

Counts apply when the number of tree stems within a size class is < 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...) For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stern containing hollows. For a multi-stemmed tree, only the largest stern is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)	Litter cover (%)	Bare ground cover (%)	Cryptogam cover (%)	Rock cover (%)			
Subplot score (% in each)	8 8 7 8 8 8	• b d	0 b 6 d 9	a (r. 1917) 1			
Average of the 5 subplots	0						

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological Type		Landform Element		Landform Patlern		Microrelief
Lithology		Soil Suiface Texture	-	Soll Colour		Sail Depth
Slope		Aspect		Site Drainage		Distance to nearest water and type
lot Disturbance	Severity code	Age code	Observational ev	idence:		
Clearing (inc. logging)		1				
Cultivation (inc. pasture) -		-				
Soll erosion						
Firewood / CWD removal						
Grazing (identity native/stock)						
Fire damage	C.		and the second second		10/10/	Doder uns Grawin Poins definit ins -
Storm damage	CID BOAR	or drawn		wath have control that		Ver. 01.02.03.113
Veediness 200 m c m			the second se			Jongo 1,50 actaine up 1, 1100a 812
					00.20	The second se

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

0 m²	plot: Sheet _ of _ Survey Name Plot Identifier	Recorders							
Date	27 8 20 Fried Gard 3	0	T						
GF ode	Top 3 native species in each growth form group: Full species name mandatory All other native and exotic species: Full species name where practicable	N, E or HTE	Cover	Abund	stratum	voucher			
T	Grey nanymore	1110	20		-				
T		6.85	10			-			
ta.	Setance Bak	E	10						
-	Parrawatta Grass.	E			cine.	nolf-tup			
G	aperis poly stachnos		-101- 1	20	Valietum	int Com			
G	Common couch		5	40	(artical)	1000 111			
	Brended	HTE	0-1	10					
dib	Triglochin strigten		0.1	7	Sinta fue	26.4.0* 39.41			
	<i>p</i>	-		- 6	Train				
	- mb.+ b		111		straits				
	10.81 0		~		an a	h, ibe as			
	and provide an experimental sector of the				1994 B 783	10/164			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_				- estudio			
	100.85 - 01				SILLEN				
	All a second to a second to a second to a second to a		- m		16/HC				
	10		A.C.		8058				
			A.		((H))((13	16 19412			
+				and an an	- WHI MOUTH	164/01			
	na ∉ ≥	-	<u> </u>			فا فرااا			
	(rd) applite Phone.				1.101	rtiwor			
	O I Aller of the second se				KITTEN .	420H) 1			
					10(010				
			1.0	Yest	n bonty	and the			
	24	h			ni se Chini				
	21								
		27 million m	161	(intolet m	1 × 1) of	dharA M			
				folia ni P	rendha R	Reprise			
				natyphio 7 a	nd to up in	u A			
	26								
						_			
-		and the second	للالد جريا			1			
	2) D4								
						_			
				-	Constraints				
	-36								
				1					

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ..., 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	Site Sheet no: 1 of						
		Survey Name	Zone ID		Recorders			
Date	27/10/20	TWEED SAND	PLANT	An	\wedge			
Zone 56	Datum	Plot ID	4	Plot dimensions	Pho	oto #		
Easting 552945	Northing	IBRA region	ln m	Midline bearing from 0 m	220	Magnetic °		
Vegetation Class	\$	Forester	wettand	en e		Confidence: H M L		
Plant Communit	у Туре	Paperbark	forest	· .	EEC: Rack	Confidence: H M L		

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

	BAM Attribute (400 m ² plot)					
	Trees	7				
	Shrubs	3				
Count of Native	Grasses etc.	2				
Richness	Forbs	. 1				
	Ferns	2				
	Other	6				
	Trees	69.7				
Sum of Cover	Shrubs	1.4				
of native vascular	Grasses etc.	5.5				
plants by growth	Forbs	30				
form group	Ferns	5.5				
	Other	14.6				
High Threat	73-5					

	BAM Attribute (1000 m	1 ² plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm	١	O ·
50 – 79 cm	1	O
30 – 49 cm		
20 – 29 cm		-
10 – 19 cm	· · · ·	
5 – 9 cm		
< 5 cm		n/a
Length of logs (m) (≥10 cm diameter, >50 cm in length)	36m ^{Ta}	lly space

Counts apply when the number of tree stems within a size class is ≤ 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)		Litter cover (%)			Bare ground cover (%)			Cryptogam cover (%)				Rock cover (%)								
Subplot score (% in each)	530	85S	65	95	85	а	b	с	d	е	а	b	с	d	e	а	b	с	d	е
Average of the 5 subplots		-	76						L			·	L		L			L	L	

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Morphological	Landform	Landform	Microrelief						
Туре	Element	Pattern	INICI DI EIIEI						
Lithology	Soil Surface	Soil	Soil						
Liniogy	Texture	Colour	Depth						
Slope	Aspect	Site Drainage	Distance to nearest						
			water and type						
	Statistics L. And L.								

Plot Disturbance	code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)			
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage			
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

400 m ²	plot: Sheet _ of _	Survey Name	Plot Identifier	T	Re	corders		
Date	27/10/20	TWEED SAND PLA			AM			
hanne and the second							r	
GF Code	All other native and exo	each growth form group: Full tic species: Full species nam	e where practicable	N, E or HTE	Cover	Abund	stratum	voucher
T	1 Melaleuca	un comp thee	vra	$\[N \]$	654			
	2 Cranamon	um comp	σα	HITE	65%			
T	3 whale bone	tree 1			Vlo	5		
	4 Broad- Leaver	& paspalm		E	60%			
Torts	5 Centella	asiatica	·		30%			
Quass	6 Tassel	sedge			5%			
	7 Gant d	with fig		E	104	11		
Other	8 Scrambin	a lilly			5%			
Other	9 Prickely 3.				56			
T	10 Cheese	hee			0.5%	2		
T	11 Franberk				1%	4		
LT	12 Waterhouse	ca flowburda			0.1%	1		
Office -	13 Concept	morning Aur.		ATE	2%	20		
other	14 Coclespor	thom			2%	(0		
	15 Umbrella	true		HTE	1%	5		
	16 Marray C	1 panic culouta		E	0.1%	(
	17 Ochna	secondata		HTE	506			
other	18 Burny 1	nie			2%	20		
\$	19 Lo Afer	Hom Hom Ine panic culasta secondata mic ly sh			0.26	3		
S	20 Muttonw	ood			0.26	10		
	21 Aspavaques	fern		HTE	0.5%	/0		
T	21 Aspavaques 22 Tuckero				0.1%	1		
Tern	23 Binny				5%			
other	24 Banaa lou	, palm			0.5%	5		
5	25 Creek	sandpaper for	9		1%	10		
T	26 Guioa	, palm såndpaper fiz			1%	3		
Fern	27 Brachen				0.5%	20		
Grass	28 Entolasia				0 5%	50		
Oth	29 Whips whe	2			0.1%	2		
	26 Guiog 27 Brachen 28 Entolasia 29 Whip whe 30 Cocos pa 31	lm		Ē	0.1%	1		
	31 /							
	32							
	33							
	34							
	35							
	36							
	37							
	38							
	39							
	40							
	a ago Crowth Form defini		native E: exotic UTE: bio				ode if tor	

 GF Code: see Growth Form definitions in Appendix 1
 N: native, E: exotic, HTE: high threat exotic
 GF - circle code if 'top 3'.

 Cover:
 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); Note: 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately 1.4 x 1.4 m, and 1% = 2.0 x 2.0 m, 5% = 4 x 5 m, 25% = 10 x 10 m

 Abundance:
 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

BAM Site -	Field Survey F	orm	·····	5	Site Sheet no:	1 of
		Survey Name	Zone ID		Recorders	
Date	27/10/20	TWEED SANG	, MLANT		Am	
Zone	Datum	Plot ID	5	Plot dimensions	Ph	oto #
Easting 552511	Northing 6872451	IBRA region	ln m	Midline bearing from 0 m	25	Magnetic °
Vegetation Clas	S	wetterd		Confidence		
Plant Communit	у Туре	Rushland			EEC: abok	<u>HML</u> Confidence: HML

Record easting and northing at 0 m on midline. Dimensions (Shape) of 0.04 ha base plot.

BAN (40)	BAM Attribute (400 m² plot)						
	Trees	0					
	Shrubs	. 0					
Count of Native	Grasses etc.	6					
Richness	Forbs	Ø					
	Ferns	0					
	Other	0.					
	Trees	0					
Sum of Cover	Shrubs	0					
of native vascular	Grasses etc.	80.4					
plants by growth	Forbs	0					
form group	Ferns	0					
 	Other	0					
High Threat	Weed cover	0					

	BAM Attribute (1000	m²plot)
DBH	# Tree Stems Count	# Stems with Hollows
80 + cm		
50 – 79 cm		
30 – 49 cm	997 - 1 1 1 1 1 1 1 1	
20 – 29 cm	· · · · · · · · · · · · · · · · · · ·	
10 – 19 cm		
5 – 9 cm		······································
< 5 cm	0	n/a
Length of logs (m) (≥10 cm diameter, >50 cm in length)	0	Tally space

Counts apply when the number of tree stems within a size class is \leq 10. Estimates can be used when > 10 (eg. 10, 20, 30..., 100, 200, 300...). For a multi-stemmed tree, only the largest living stem is included in the count/estimate. Tree stems must be living.

For hollows, count only the presence of a stem containing hollows. For a multi-stemmed tree, only the largest stem is included in the count/estimate. Stems may be dead and may be shrubs.

BAM Attribute (1 x 1 m plots)		Litter cover (%)			Bare ground cover (%)			Cryptogam cover (%)				(%)	Rock cover (%)				Ň			
Subplot score (% in each)	а	b	с	d	е	а	b	с	d	e	а	b	С	d	e	а	b	с	d	e
Average of the 5 subplots			0	• <u> </u>	·		۰ ۰	·				ł	I		L;					

Litter cover is assessed as the average percentage ground cover of litter recorded from five 1 m x 1 m plots centred at 5, 15, 25, 35, 45 m along the plot midline. Litter cover includes leaves, seeds, twigs, branchlets and branches (less than 10 cm in diameter). Assessors may also record the cover of rock, bare ground and cryptogams.

Physiography + site features that may help in determining PCT and Management Zone (optional)

Type	Landform Element	Landform Pattern	Microrelief
Lithology	Soil Surface Texture	Soil Colour	Soil Deoth
Slope	Aspect	Site Drainage	Distance to nearest water and type

Plot Disturbance	Severity code	Age code	Observational evidence:
Clearing (inc. logging)			
Cultivation (inc. pasture)		•	1
Soil erosion			
Firewood / CWD removal			
Grazing (identify native/stock)			
Fire damage			
Storm damage		· ·	
Weediness			
Other			

Severity: 0=no evidence, 1=light, 2=moderate, 3=severe

Age: R=recent (<3yrs), NR=not recent (3-10yrs), O=old (>10yrs)

400 m²	plot: Sheet _ of _	Survey Name	Plot Identifier	T	Re	ecorders			
Date	27/6/20	TWEED SAND	<u></u>	AM					
					1				
GF Code	Top 3 native species in All other native and exot	each growth form group: Ful tic species: Full species nam	l species name mandatory e where practicable	N, Eor HTE	Cover	Abund	stratum	voucher	
5	1 Typha			W	75				
	2 Setariz			E	5				
G	3 Triangle	club vash		N	0-1	20			
2	4 Phogemit	club vash es australi	7	N	01	10			
9	5 Cypelis	poly stucky	© }	N	0.1	5			
GG	6 Unch g	hass)		\mathcal{N}	5				
9	7 Eleochad	is sphacel	ata	と	0.1	5			
	8								
	9								
	10								
	11	· · · ·							
	12								
	13								
	14								
	15 .								
	16								
	17								
	18								
	19	·							
	20								
	21								
	22								
	23								
	2.4								
	25								
	26								
	27								
	28								
	29								
	30		· · · ·						
	31								
	32								
	33								
	34								
	35								
	36								
	37								
	38								
	39								
	40								
OF Oada	and the second	and the Annual the A	and the second						

GF Code: see Growth Form definitions in Appendix 1 N: native, E: exotic, **HTE:** high threat exotic **GF – circle code** if 'top 3'. **Cover:** 0.1, 0.2, 0.3, ..., 1, 2, 3, ..., 10, 15, 20, 25, ...100% (foliage cover); **Note:** 0.1% cover represents an area of approximately 63 x 63 cm or a circle about 71 cm across, 0.5% cover represents an area of approximately $1.4 \times 1.4 m$, and $1\% = 2.0 \times 2.0 m$, $5\% = 4 \times 5 m$, $25\% = 10 \times 10 m$ **Abundance:** 1, 2, 3, ..., 10, 20, 30, ... 100, 200, ..., 1000, ...

APPENDIX 3 - BAM PREDICTED SPECIES REPORT

Proposal Details		
Assessment Id	Proposal Name	BAM data last updated *
00022641/BAAS18069/20/00022642	Tweed Sand Plant	10/06/2021
Assessor Name	Report Created	BAM Data version *
Adam Michael McArthur	25/10/2021	45
Assessor Number	Assessment Type	BAM Case Status
BAAS18069	Major Projects	Finalised
Assessment Revision		Date Finalised
0		25/10/2021
* Disclaimer: BA	M data last undated may indicate either co	mplete or partial

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Threatened species reliably predicted to utilise the site. No surveys are required for these species. Ecosystem credits apply to these species.

Common Name	Scientific Name	Vegetation Types(s)
Australasian Bittern	Botaurus poiciloptilus	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
Australian Painted Snipe	Rostratula australis	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1808-Estuarine reedland
Barking Owl	Ninox connivens	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Barred Cuckoo- shrike	Coracina lineata	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Black Bittern	Ixobrychus flavicollis	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion

Black Bittern	Ixobrychus flavicollis	1808-Estuarine reedland
Black-necked Stork	Ephippiorhynchus asiaticus	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Dusky Woodswallow	Artamus cyanopterus	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
	cyanopterus	1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
Eastern Coastal Free-tailed Bat	Micronomus norfolkensis	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
Eastern Osprey	Pandion cristatus	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
Freckled Duck	Stictonetta naevosa	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
Glossy Black- Cockatoo	Calyptorhynchus lathami	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
Grey-headed Flying- fox	Pteropus poliocephalus	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Hoary Wattled Bat	Chalinolobus nigrogriseus	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Koala	Phascolarctos cinereus	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion

Assessment Id

Large Bent-winged	Miniopterus orianae oceanensis	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
Bat	oceanensis	1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
Little Bent-winged	Minionterus australis	1235-Swamp Oak swamp forest of the coastal lowlands of the
Bat		NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
Little Eagle	Hieraaetus morphnoides	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
Little Lorikeet	Glossopsitta pusilla	1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
New Holland Mouse	Pseudomys novaehollandiae	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Northern Free-tailed Bat	Ozimops lumsdenae	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Powerful Owl	Ninox strenua	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Regent Honeyeater	Anthochaera phrygia	1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Spotted Harrier	Circus assimilis	1808-Estuarine reedland
Spotted-tailed Quoll	Dasyurus maculatus	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
Square-tailed Kite	Lophoictinia isura	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion

Square-tailed Kite	Lophoictinia isura	1808-Estuarine reedland
Superb Fruit-Dove	Ptilinopus superbus	1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Swift Parrot	Lathamus discolor	1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Terek Sandpiper	Xenus cinereus	1808-Estuarine reedland
Varied Sittella	Daphoenositta chrysoptera	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
White-bellied Sea- Eagle	Haliaeetus leucogaster	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
White-throated Needletail	Hirundapus caudacutus	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
		1808-Estuarine reedland
Yellow-bellied Sheathtail-bat	Saccolaimus flaviventris	1235-Swamp Oak swamp forest of the coastal lowlands of the NSW North Coast Bioregion
		1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion

Threatened species assessed as not within the vegetation zone(s) for the PCT(s)

Common Name	Scientific Name	Plant Community Type(s)
Australasian Bittern	Botaurus poiciloptilus	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Australian Painted Snipe	Rostratula australis	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Barking Owl	Ninox connivens	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Barred Cuckoo- shrike	Coracina lineata	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Bar-tailed Godwit (baueri)	Limosa lapponica baueri	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Black Bittern	Ixobrychus flavicollis	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast

Assessment Id

Black-necked Stork	Ephippiorhynchus asiaticus	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Black-tailed Godwit	Limosa limosa	1808-Estuarine reedland
Broad-billed Sandpiper	Limicola falcinellus	1808-Estuarine reedland
Brolga	Grus rubicunda	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Comb-crested Jacana	Irediparra gallinacea	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Curlew Sandpiper	Calidris ferruginea	1808-Estuarine reedland
Dusky Woodswallow	Artamus cyanopterus cyanopterus	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Eastern Coastal Free-tailed Bat	Micronomus norfolkensis	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Eastern Curlew	Numenius madagascariensis	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Eastern Osprey	Pandion cristatus	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Freckled Duck	Stictonetta naevosa	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Glossy Black- Cockatoo	Calyptorhynchus lathami	1064-Paperbark swamp forest of the coastal lowlands of the NSW North Coast Bioregion and Sydney Basin Bioregion
Large Bent-winged Bat	Miniopterus orianae oceanensis	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Little Eagle	Hieraaetus morphnoides	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Magpie Goose	Anseranas semipalmata	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
New Holland Mouse	Pseudomys novaehollandiae	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Northern Free-tailed Bat	Ozimops lumsdenae	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Red Knot	Calidris canutus	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Sanderling	Calidris alba	1808-Estuarine reedland
Spotted Harrier	Circus assimilis	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast

Spotted-tailed Quoll	Dasyurus maculatus	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Terek Sandpiper	Xenus cinereus	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
White-bellied Sea- Eagle	Haliaeetus leucogaster	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
White-throated Needletail	Hirundapus caudacutus	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast
Yellow-bellied Sheathtail-bat	Saccolaimus flaviventris	780-Coastal floodplain sedgelands, rushlands, and forblands of the North Coast

Threatened species assessed as not within the vegetation zone(s) for the PCT(s) Refer to BAR for detailed justification

Common Name	Scientific Name	Justification in the BAM-C
Bar-tailed Godwit (baueri)	Limosa lapponica baueri	Habitat constraints
Black-tailed Godwit	Limosa limosa	Habitat constraints
Broad-billed Sandpiper	Limicola falcinellus	Habitat constraints Geographic limitations
Brolga	Grus rubicunda	Refer to BAR
Comb-crested Jacana	Irediparra gallinacea	Habitat constraints
Curlew Sandpiper	Calidris ferruginea	Habitat constraints
Eastern Curlew	Numenius madagascariensis	Habitat constraints
Magpie Goose	Anseranas semipalmata	Refer to BAR
Red Knot	Calidris canutus	Habitat constraints
Sanderling	Calidris alba	Habitat constraints

APPENDIX 4 - BAM CANDIDATE SPECIES REPORT

Proposal Details

Assessment Id	Proposal Name	BAM data last updated *
00022641/BAAS18069/20/00022642	2 Tweed Sand Plant	10/06/2021
Assessor Name	Report Created	BAM Data version *
Adam Michael McArthur	25/10/2021	45
Assessor Number	Assessment Type	BAM Case Status
BAAS18069	Major Projects	Finalised
Assessment Revision	Date Finalised	
0	25/10/2021	

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

List of Species Requiring Survey

Name	Presence	Survey Months
Acacia bakeri Marblewood	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec
Acronychia littoralis Scented Acronychia	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec
<i>Allocasuarina defungens</i> Dwarf Heath Casuarina	No (surveyed)	✓ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul ✓ Aug □ Sep ✓ Oct □ Nov □ Dec □ Survey month outside the specified months?

Archidendron hendersonii White Lace Flower	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec Survey month outside the specified months?
Arthraxon hispidus Hairy Jointgrass	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Cassia marksiana Cassia marksiana	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec
Centranthera cochinchinensis Swamp Foxglove	No (surveyed)	☑ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?
Crinia tinnula Wallum Froglet	No (surveyed)	✓ Jan Feb Mar Apr □ May Jun Jul Aug □ Sep Oct Nov Dec □ Survey month outside the specified months?
Cyperus aquatilis Water Nutgrass	No (surveyed)	✓ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Survey month outside the specified months?

Davidsonia jerseyana	No (surveyed)	
Davidson's Plum	- ())	☑ Jan 🗆 Feb 🗆 Mar 🗖 Apr
		□ May □ Jun □ Jul ☑ Aug
		□ Sep Ø Oct □ Nov □ Dec
		Survey month outside the specified months?
Dendrobium melaleucaphilum Spider orchid	No (surveyed)	🗆 Jan 🗆 Feb 🗆 Mar 🗆 Apr
Spider oferia		🗆 May 🗆 Jun 🗖 Jul 🗹 Aug
		Sep Cct Nov Dec
		Survey month outside the specified months?
Desmodium acanthocladum Thorny Pea	No (surveyed)	🗹 Jan 🗆 Feb 🗆 Mar 🗖 Apr
		🗆 May 🗆 Jun 🗖 Jul 🗹 Aug
		□ Sep Ø Oct □ Nov □ Dec
		Survey month outside the specified months?
<i>Diospyros mabacea</i> Red-fruited Ebony	No (surveyed)	☑ Jan □ Feb □ Mar □ Apr
		🗆 May 🗖 Jun 🗖 Jul 🗹 Aug
		□ Sep Ø Oct □ Nov □ Dec
		Survey month outside the specified months?
Diospyros yandina Shiny-leaved Ebony	No (surveyed)	🗹 Jan 🗆 Feb 🗆 Mar 🗖 Apr
Shiriy leaved Loony		🗆 May 🗖 Jun 🗖 Jul 🗹 Aug
		□ Sep ☑ Oct □ Nov □ Dec
		Survey month outside the specified months?
Diploglottis campbellii Small-leaved Tamarind	No (surveyed)	🗹 Jan 🗆 Feb 🗆 Mar 🗖 Apr
		□ May □ Jun □ Jul ☑ Aug
		□ Sep ☑ Oct □ Nov □ Dec
		□ Survey month outside the
		specified months?

Drynaria rigidula Basket Fern	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug ✓ Sep ✓ Oct Nov Dec
<i>Eleocharis tetraquetra</i> Square-stemmed Spike-rush	No (surveyed)	✓ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?
Endiandra muelleri subsp. bracteata Green-leaved Rose Walnut	No (surveyed)	✓ Jan ⊢ Feb ⊢ Mar ⊢ Apr □ May □ Jun □ Jul ✓ Aug □ Sep ☑ Oct □ Nov □ Dec □ Survey month outside the specified months?
Floydia praealta Ball Nut	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec
Geodorum densiflorum Pink Nodding Orchid	No (surveyed)	✓ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?
Gossia fragrantissima Sweet Myrtle	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec Survey month outside the specified months?

Grevillea hilliana White Yiel Yiel	No (surveyed)	 ✓ Jan May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec
		Survey month outside the specified months?
Isoglossa eranthemoides Isoglossa	No (surveyed)	□ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep ☑ Oct □ Nov □ Dec □ Survey month outside the specified months?
Lindsaea fraseri Fraser's Screw Fern	No (surveyed)	✓ Jan Feb Mar Apr May Jun Jul ✓ Aug Sep Oct Nov Dec Survey month outside the specified months?
<i>Litoria brevipalmata</i> Green-thighed Frog	No (surveyed)	✓ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Survey month outside the specified months?
<i>Litoria olongburensis</i> Olongburra Frog	No (surveyed)	✓ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Survey month outside the specified months?
Macadamia tetraphylla Rough-shelled Bush Nut	No (surveyed)	☑ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul ☑ Aug □ Sep ☑ Oct □ Nov □ Dec □ Survey month outside the specified months?

<i>Myotis macropus</i> Southern Myotis	Yes (surveyed)	☑ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sep □ Oct □ Nov □ Dec □ Survey month outside the specified months?
<i>Myrsine richmondensis</i> Ripple-leaf Muttonwood	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec
Oberonia complanata Yellow-flowered King of the Fairies	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec
Oberonia titania Red-flowered King of the Fairies	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec
Ochrosia moorei Southern Ochrosia	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul ✓ Aug Sep ✓ Oct Nov Dec
Oldenlandia galioides Oldenlandia galioides	No (surveyed)	 ✓ Jan ✓ Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Peristeranthus hillii Brown Fairy-chain Orchid	No (surveyed)	🗆 Jan 🗆 Feb 🗆 Mar 🗆 Apr
		🗆 May 🗆 Jun 🗖 Jul 🗖 Aug
		Sep 🗹 Oct 🗆 Nov 🗆 Dec
		Survey month outside the specified months?
Petalura litorea Coastal Petaltail	No (surveyed)	☑ Jan □ Feb □ Mar □ Apr
		🗆 May 🗆 Jun 🗖 Jul 🗖 Aug
		Sep Oct Nov Dec
		Survey month outside the specified months?
Phaius australis Southern Swamp Orchid	No (surveyed)	□ Jan □ Feb □ Mar □ Apr
		🗆 May 🗆 Jun 🗖 Jul 🗖 Aug
		Sep Oct Nov Dec
		Survey month outside the specified months?
Phascolarctos cinereus - endangered population	No (surveyed)	🗹 Jan 🗆 Feb 🗆 Mar 🗆 Apr
Koala population between the Tweed River and Brunswick River east of the Pacific Highway		🗆 May 🗖 Jun 🗖 Jul 🗹 Aug
		Sep 🗹 Oct 🗆 Nov 🗆 Dec
		Survey month outside the specified months?
Phyllanthus microcladus Brush Sauropus	No (surveyed)	🗹 Jan 🗆 Feb 🗖 Mar 🗖 Apr
		🗆 May 🗆 Jun 🗖 Jul 🗹 Aug
		□ Sep ☑ Oct □ Nov □ Dec
		Survey month outside the specified months?
Syzygium hodgkinsoniae Red Lilly Pilly	No (surveyed)	🗹 Jan 🗆 Feb 🗖 Mar 🗖 Apr
Red Liny Pilly		🗆 May 🗆 Jun 🗖 Jul 🗹 Aug
		□ Sep ☑ Oct □ Nov □ Dec
		Survey month outside the specified months?

Proposal Name

Tweed Sand Plant

Syzygium moorei Durobby	No (surveyed)	 ☑ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul ☑ Aug □ Sep ☑ Oct □ Nov □ Dec
<i>Thersites mitchellae</i> Mitchell's Rainforest Snail	No (surveyed)	☑ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul ☑ Aug □ Sep ☑ Oct □ Nov □ Dec □ Survey month outside the specified months?

Threatened species assessed as not on site

Common name	Scientific name	Justification in the BAM-C
Barking Owl	Ninox connivens	Habitat constraints
Bar-tailed Godwit (baueri)	Limosa lapponica baueri	Habitat degraded
Black-tailed Godwit	Limosa limosa	Habitat degraded
Broad-billed Sandpiper	Limicola falcinellus	Habitat degraded Geographic limitations
Brush-tailed Phascogale	Phascogale tapoatafa	Habitat degraded
Common Planigale	Planigale maculata	Habitat degraded
Curlew Sandpiper	Calidris ferruginea	Habitat degraded
Eastern Curlew	Numenius madagascariensis	Habitat degraded
Eastern Osprey	Pandion cristatus	Habitat constraints
Eastern Pygmy-possum	Cercartetus nanus	Habitat degraded
Glossy Black-Cockatoo	Calyptorhynchus lathami	Habitat constraints
Grey-headed Flying-fox	Pteropus poliocephalus	Habitat constraints
Koala	Phascolarctos cinereus	Habitat constraints
Laced Fritillary	Argynnis hyperbius	Habitat constraints Geographic limitations
Large Bent-winged Bat	Miniopterus orianae oceanensis	Habitat constraints

Refer to BAR for detailed justification

Assessment Id

Large-eared Pied Bat	Chalinolobus dwyeri	Habitat constraints
Little Bent-winged Bat	Miniopterus australis	Habitat constraints
Little Eagle	Hieraaetus morphnoides	Habitat constraints
Pale-headed Snake	Hoplocephalus bitorquatus	Habitat degraded
Powerful Owl	Ninox strenua	Habitat constraints
Red Knot	Calidris canutus	Habitat degraded
Regent Honeyeater	Anthochaera phrygia	Habitat constraints
Sanderling	Calidris alba	Habitat degraded
Square-tailed Kite	Lophoictinia isura	Habitat constraints
Squirrel Glider	Petaurus norfolcensis	Habitat degraded
Swift Parrot	Lathamus discolor	Habitat constraints
Terek Sandpiper	Xenus cinereus	Habitat degraded Geographic limitations
White-bellied Sea-Eagle	Haliaeetus leucogaster	Habitat constraints
White-crowned Snake	Cacophis harriettae	Habitat constraints

APPENDIX 5 - BAM BIODIVERSITY CREDIT REPORT

Proposal Details

Assessment Id	Proposal Name	BAM data last updated *
00022641/BAAS18069/20/00022642	Tweed Sand Plant	10/06/2021
Assessor Name	Assessor Number	BAM Data version *
Adam Michael McArthur	BAAS18069	45
Proponent Names	Report Created	BAM Case Status
	25/10/2021	Finalised
Assessment Revision	Assessment Type	Date Finalised
0	Major Projects	25/10/2021
	* Disclaimer: BAM data last updated may indicat	e either complete or partial update of the

* Disclaimer: BAM data last updated may indicate either complete or partial update of the BAM calculator database. BAM calculator database may not be completely aligned with Bionet.

Potential Serious and Irreversible Impacts

Name of threatened ecological community	Listing status	Name of Plant Community Type/ID
Nil		
Species		
Nil		
Additional Information for Approval		

PCTs With Customized Benchmarks

Assessment Id

Proposal Name

00022641/BAAS18069/20/00022642

Tweed Sand Plant

Page 1 of 15

РСТ	
No Changes	
Predicted Threatened Species Not On Site	
Name	
Anseranas semipalmata / Magpie Goose	
Grus rubicunda / Brolga	
Irediparra gallinacea / Comb-crested Jacana	
Calidris alba / Sanderling	
Calidris ferruginea / Curlew Sandpiper	
Limicola falcinellus / Broad-billed Sandpiper	
Limosa limosa / Black-tailed Godwit	
Numenius madagascariensis / Eastern Curlew	
Calidris canutus / Red Knot	
Limosa lapponica baueri / Bar-tailed Godwit (baueri)	

Ecosystem Credit Summary (Number and class of biodiversity credits to be retired)

Name of Plant Community Type,	/ID	Name of threatened e	cological commu	unity	Area of impact	HBT Cr	No HBT Cr	Total credits to be retired	
1235-Swamp Oak swamp forest the NSW North Coast Bioregion	of the coastal lowlands of	of Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions		3.5	0	72	72		
1064-Paperbark swamp forest of the NSW North Coast Bioregion Bioregion				d Sydney Basin Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner		0.8	0	21	21
1808-Estuarine reedland		Not a TEC			1.6	0	60	60	
1064-Paperbark swamp forest	Like-for-like credit retir	ement options							
of the coastal lowlands of the NSW North Coast Bioregion	Name of offset trading group	Trading group Zone HBT			Credits	IBRA region			
and Sydney Basin Bioregion									

Assessment Id

	Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions This includes PCT's: 837, 839, 926, 971, 1064, 1092, 1227, 1230, 1231, 1232, 1235, 1649, 1715, 1716, 1717, 1718, 1719, 1721, 1722, 1723, 1724, 1725, 1730, 1795, 1798		1064_Phase_10	No	21	Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. Or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
1235-Swamp Oak swamp	Like-for-like credit reti	rement options				
forest of the coastal lowlands of the NSW North Coast	Name of offset trading group	Trading group	Zone	НВТ	Credits	IBRA region
Bioregion						
	During and Alam					

Assessment Id

Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions This includes PCT's: 837, 839, 926, 971, 1064, 1092, 1227, 1230, 1231, 1232, 1235, 1649, 1715, 1716, 1717, 1718, 1719, 1721, 1722, 1723, 1724, 1725, 1730, 1795, 1798	- 1235_Phase_5	No 8	Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. Or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.

Assessment Id

Forest Floodp South V Coast, South I Bioregi This in 837, 83 1092, 1 1232, 1 1716, 1 1721, 1	- Sclerophyll on Coastal lains of the New Wales North Sydney Basin and East Corner ions includes PCT's: 39, 926, 971, 1064, 2227, 1230, 1231, 235, 1649, 1715, 1717, 1718, 1719, 1722, 1723, 1724, 1730, 1795, 1798	1235_Phase_10 No	12 Burringbar-Cononda Rim and Sunshine Co Lowlands. or Any IBRA subregion t kilometers of the ou impacted site.	bast-Gold Coast

Assessment Id

Swamp Sclerophyll - Forest on Coastal - Floodplains of the New - South Wales North - Coast, Sydney Basin and - South East Corner - Bioregions - This includes PCT's: 837, 839, 926, 971, 1064, 1092, 1227, 1230, 1231, 1232, 1235, 1649, 1715, 1716, 1717, 1718, 1719, 1721, 1722, 1723, 1724, 1725, 1730, 1795, 1798	1235_Mangrov es_Phase_6	No	Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
1725, 1730, 1795, 1796			

Assessment Id

Forest Flood South Coast South Biorest This i 837, 8 1092, 1232, 1716, 1721,	np Sclerophyll - it on Coastal - lplains of the New - n Wales North - t, Sydney Basin and - n East Corner - gions - includes PCT's: - 339, 926, 971, 1064, - 1227, 1230, 1231, - 1235, 1649, 1715, - 1717, 1718, 1719, - 1722, 1723, 1724, - 1730, 1795, 1798 -	1235_Mangrov N es_Phase_7	Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.

Assessment Id

Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions This includes PCT's: 837, 839, 926, 971, 1064, 1092, 1227, 1230, 1231, 1232, 1235, 1649, 1715, 1716, 1717, 1718, 1719, 1721, 1722, 1723, 1724, 1725, 1730, 1795, 1798	- 1235_Phase_	6 No	6 Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.

Assessment Id

Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions This includes PCT's: 837, 839, 926, 971, 1064, 1092, 1227, 1230, 1231, 1232, 1235, 1649, 1715, 1716, 1717, 1718, 1719, 1721, 1722, 1723, 1724, 1725, 1730, 1795, 1798	- 1235_Phase_7	No 2	Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.

Assessment Id

Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions This includes PCT's: 837, 839, 926, 971, 1064 1092, 1227, 1230, 1231, 1232, 1235, 1649, 1715, 1716, 1717, 1718, 1719, 1721, 1722, 1723, 1724, 1725, 1730, 1795, 1798	1 I,	Phase_8 No	4 Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.

Assessment Id

Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions This includes PCT's: 837, 839, 926, 971, 1064, 1092, 1227, 1230, 1231, 1232, 1235, 1649, 1715, 1716, 1717, 1718, 1719, 1721, 1722, 1723, 1724, 1725, 1730, 1795, 1798	- 1235_Phase_9	No 3	Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.

Assessment Id

	Swamp Sclerophyll Forest on Coastal Floodplains of the New South Wales North Coast, Sydney Basin and South East Corner Bioregions This includes PCT's: 837, 839, 926, 971, 1064, 1092, 1227, 1230, 1231, 1232, 1235, 1649, 1715, 1716, 1717, 1718, 1719, 1721, 1722, 1723, 1724, 1725, 1730, 1795, 1798		1235_Rehab_P hase_6	No	24	Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. Or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
1808-Estuarine reedland	Like-for-like credit reti	rement options				
	Class	Trading group	Zone	НВТ	Credits	IBRA region

Assessment Id

Coastal Freshwater Lagoons This includes PCT's: 781, 782, 783, 1071, 1735, 1736, 1737, 1738, 1740, 1741, 1742, 1808, 1911	Coastal Freshwater Lagoons <50%	1808_Rehab_P hase_5_	No	33	Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.
Coastal Freshwater Lagoons This includes PCT's: 781, 782, 783, 1071, 1735, 1736, 1737, 1738, 1740, 1741, 1742, 1808, 1911	Coastal Freshwater Lagoons <50%	1808_Rehab_P hase_6	No	27	Burringbar-Conondale Ranges, Scenic Rim and Sunshine Coast-Gold Coast Lowlands. or Any IBRA subregion that is within 100 kilometers of the outer edge of the impacted site.

Species Credit Summary

00022641/BAAS18069/20/00022642

Species	Vegetation Zone/s	Area / Count	Credits
Myotis macropus / Southern Myotis	1235_Phase_5, 1235_Phase_10, 1235_Mangroves_Phase_6, 1235_Mangroves_Phase_7, 1064_Phase_10, 1235_Phase_6, 1235_Phase_7, 1235_Phase_8, 1235_Phase_9, 1808_Rehab_Phase_5_, 1808_Rehab_Phase_6, 1235_Rehab_Phase_6		157.00

Myotis macropus / Southern Myotis	Spp	IBRA subregion	
	Myotis macropus / Southern Myotis	Any in NSW	